Design of Thiocyanate-bridged Multifunctional Fe^{ll}-Hg^{ll} Frameworks

(¹*The Univ. of Tokyo, Sch. of Sci., Dept. of Chem.*) OGuanping Li¹, Olaf Stefanczyk¹, Kunal Kumar¹, Shin-ichi Ohkoshi¹

Keywords: Spin-crossover, Photomagnetism, Mercury complexes, Iron complexes, Molecular magnetism

Numerous aspects of spin-crossover (SCO) materials, such as syntheses, structures and physicochemical properties, have been vigorously researched in last decades.^{1,2} In this context, the goal of my work is to design and characterize the high dimensional thiocyanate-bridged SCO compound {[Fe(4-acpy)₂][Hg(SCN)₄]}_n (FeHg4-Acpy) based on iron(II) ions with [Hg(SCN)₄]²⁻ anions and 4-acetylpyridines(4-acpy). Crystals of FeHg4-Acpy forms 3D network built of two symmetry-independent tetragonally-distorted octahedral [Fe(4-acpy)₂(NCS)₄] units and it crystallizes in the non-centrosymmetric orthorhombic space group Pna21. The noticeable changes of structural parameters with temperature of crystal were observed, which can be accounted to changes of spin state of central Fe^{II} ions from low spin state ($S_{Fe(II)} = 0$) at low temperature to high spin state ($S_{Fe(II)} =$ 2) at high temperature. The compound is found to have fully occupied quintet paramagnetic high-spin(HS) state in two Fe^{II} sites at 300 K. When cooling down, it revealed partial SCO effect with $T_{1/2} = 103$ K owing to the formation of low-spin state for one Fe^{II} ion (S = 0, $t_{2g}{}^{6}e_{g}{}^{0}$) and high-spin state for another Fe^{II} ion (S = 2, $t_{2g}{}^{4}e_{g}{}^{2}$). The Light-Induced Excited Spin-State Trapping (LIESST) effect can be observed for this crystal with 473, 532, 658 and 1064 nm lights, which can be further confirmed by temperature-dependent UV-Vis, IR and THz-TDS spectroscopy.

Figure 1. Structures of FeHg4-Acpy at 90K(Left figure) and 300K(Right figure)

S. Ohkoshi, S. Takano, K. Imoto, M. Yoshikiyo, A. Namai, H. Tokoro, *Nature Photonics* 2014, *8*, 65. 2)
S. Ohkoshi, K. Imoto, Y. Tsunobuchi, S. Takano, H. Tokoro, *Nature Chemistry* 2011, *3*, 564.