アラニンドープによる KDP 結晶の相転移温度の変化

Change of phase transition temperature of KDP single crystal by doping Alanine 大阪大学 ○(D) 三田 善志郎, (M1) 後藤 敦, 渡邊 浩, 木村 真一

Osaka Univ., °Zenjiro Mita, Atsushi Goto, Hiroshi Watanabe, Shin-ichi Kimura

E-mail: z.mita@fbs.osaka-u.ac.jp

KDP(KH₂PO₄)は、その高い誘電性によって高い第二次高調波(SHG)変換効率を示すなどの 典型的な非線形光学結晶である。その誘電性は、高温の常誘電相から 122K 以下で強誘電相へと 相転移することが知られている。近年、KDP 結晶にアミノ酸の一種であるアラニンをドープする ことによる SHG 効率の上昇が報告された[1]。しかし、その起源やドープによる相転移の変化につ いては明確になっていない。そこで我々は、アラニンのドープ量を変化させた KDP 単結晶を育成 し、SHG の性質などの基礎物性の測定を行っている。今回は、THz 偏光反射スペクトルから強誘 電相転移温度のドープ量依存性を調査したので報告する。

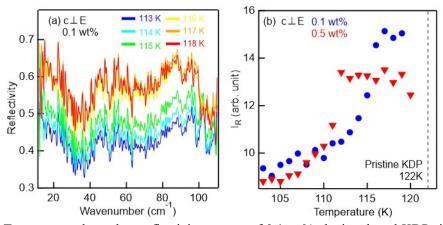


Fig. 1. (a) Temperature-dependent reflectivity spectra of 0.1-wt% alanine-doped KDP single crystal with the electric vector perpendicular to the c-axis ($E \perp c$) in the THz region. (b) Integrated THz reflectivity spectra (I_R) as a function of temperature. Jumps indicate phase transition temperatures. The vertical dashed line indicates the phase transition temperature of pristine KDP.

Reference

1. K. D. Parikh et al., Cryst. Res. Technol. 45, 603 (2010).