日本地球惑星科学連合2014年大会

講演情報

口頭発表

セッション記号 S (固体地球科学) » S-SS 地震学

[S-SS30_28AM2] 海溝型巨大地震の新しい描像

2014年4月28日(月) 11:00 〜 12:42 メインホール (1F)

コンビーナ:*金川 久一(千葉大学大学院理学研究科)、古村 孝志(東京大学大学院情報学環総合防災情報研究センター)、小平 秀一(海洋研究開発機構 地球内部ダイナミクス領域)、宍倉 正展(産業技術総合研究所 活断層・地震研究センター)、座長:斎藤 実篤(独立行政法人海洋研究開発機構)

11:00 〜 11:15

[SSS30-P16_PG] 構造研究に基づく南海トラフ地震発生帯の3次元速度構造モデル

ポスター講演3分口頭発表枠

*仲西 理子1高橋 成実1山本 揚二朗1高橋 努1尾鼻 浩一郎1小平 秀一1金田 義行1 (1.海洋研究開発機構)

Coseismic rupture area of the great interplate earthquake concerned about its occurrence along the Nankai Trough presumed by government of Japan is now wider to the west, north and south than the former assumption. Although the new estimation is based on seafloor topography, source area of the past largest megathrust event, present seismic activity and so on, structural information has not always been enough reflected yet. In order to estimate precise coseismic rupture area of the Nankai megathrust earthquake, it is necessary to improve a physical model of the Nankai Trough seismogenic zone based on the geometry of the subducting plate and velocity structure model.
Japan Agency for Marine-Earth Science and Technology had conducted the large-scale high-resolution wide-angle and reflection seismic survey and long-term observation from off Kyushu to Tokai between 2008 and 2012. Layered velocity structure models are now obtained along grid two-dimensional seismic profiles from the Hyuga-nada to the Kii channel area. A three-dimensional seismic tomography using active and passive seismic data observed both land and ocean bottom stations had been also performed for the western Nankai Trough.
In this study, we constructed a three-dimensional velocity model of the Nankai Trough with the procedure as follows;
1) Sampling the velocity structural information along each seismic profile with interval of ~1km in horizontal, and ~100m in vertical directions
2) Preparing the geometry model of each interface included in layered models, e.g., basement, plate boundary, Moho, etc.
3) Setting minimum and maximum velocities of each layer based on the velocity models along two-dimensional seismic profiles
4) Interpolating sampled velocity information considering layered structure
(Landmark DecisionSpaceDesktop is used for constructing 3-D modeling)
Previously published layered models are also used to make up for insufficient structural information for the eastern Nankai Trough.
Reliability of the three-dimensional model was confirmed by comparing calculated travel-times with observed travel-times along each seismic profile. We will also try to evaluate the reliability of the model by comparing the hypocenter distribution using three-dimensional velocity model obtained in this study with that determined by three-dimensional seismic tomography using active and passive source data. We will plan to revise our 3D model with additional structural information and construct more precise and detailed model for the entire Nankai Trough area so that the model can be applied to more realistic numerical simulation.
This study is part of 'Research concerning Interaction Between the Tokai, Tonankai and Nankai Earthquakes (FY2008-2012)' funded by Ministry of Education, Culture, Sports, Science and Technology, Japan.