日本地球惑星科学連合2015年大会

講演情報

口頭発表

セッション記号 P (宇宙惑星科学) » P-PS 惑星科学

[P-PS23] 月の科学と探査

2015年5月26日(火) 09:00 〜 10:45 A02 (アパホテル&リゾート 東京ベイ幕張)

コンビーナ:*長岡 央(早稲田大学先進理工学部)、諸田 智克(名古屋大学大学院環境学研究科)、Masaki N Nishino(Solar-Terrestrial Environment Laboratory, Nagoya University)、本田 親寿(会津大学)、長 勇一郎(立教大学理学部)、座長:大竹 真紀子(宇宙航空研究開発機構 宇宙科学研究本部 固体惑星科学研究系)、小川 佳子(会津大学)

09:00 〜 09:15

[PPS23-13] 月のマントル対流の三次元球殻モデリング

*小河 正基1柳澤 孝寿2亀山 真典3 (1.東京大学大学院総合文化研究科、2.海洋研究開発機構、3.愛媛大学地球深部ダイナミックス研究センター)

キーワード:月, マントル進化, 3次元球殻, マントル対流, 数値シミュレーション

Earlier two-dimensional models of coupled magmatism-mantle convection system raise two issues concerning the evolution of the lunar mantle. One is to understand why lunar magmatism continuously occurs with a characteristic time of several hundred million years. When the Rayleigh number of the lunar mantle Ra exceeds the critical value for the onset of thermal convection Rc, earlier two-dimensional models suggest that a positive feedback, called the magmatism-mantle upwelling (MMU) feedback, operates to make magmatism episodic and vigorous; magmatism occurs continuously and mildly as observed on the Moon only when Ra < Rc. Another issue is to understand why mare magmatism continued until as recent as about a billion years ago. Magmatism extracts heat producing elements (HPEs) and earlier two-dimensional models predicts that lunar magmatism should have waned much earlier because of this HPEs extraction. A possible solution to this issue is that the lunar mantle contains a reservoir that is enriched in HPEs and compositionally dense at depth. The nature of thermal convection in a basally heated mantle with a small core, however, has not been investigated enough to resolve these issues. To estimate Rc and to understand the nature of thermal convection in the lunar mantle, we are carrying out a linear perturbation analyses and numerical simulation of thermal convection in a spherical shell with a small core.