日本地球惑星科学連合2015年大会

講演情報

インターナショナルセッション(口頭発表)

セッション記号 S (固体地球科学) » S-IT 地球内部科学・地球惑星テクトニクス

[S-IT03] Structure and dynamics of Earth and Planetary deep interiors

2015年5月26日(火) 11:00 〜 12:45 106 (1F)

コンビーナ:*芳野 極(岡山大学地球物質科学研究センター)、田中 聡(海洋研究開発機構 地球深部ダイナミクス研究分野)、趙 大鵬(東北大学大学院理学研究科附属地震・噴火予知研究観測センター)、亀山 真典(国立大学法人愛媛大学地球深部ダイナミクス研究センター)、John Hernlund(Earth-Life Science Institute, Tokyo Institute of Technology)、座長:田中 聡(海洋研究開発機構 地球深部ダイナミクス研究分野)、河合 研志(東京大学大学院総合文化研究科広域科学専攻)

11:45 〜 12:00

[SIT03-25] ε鉄の粒成長と内核のダイナミクス

*山崎 大輔1辻野 典秀1米田 明1芳野 極1肥後 祐司2 (1.岡山大学、2.高輝度光科学研究センター)

The inner core is thought to be composed of Fe-Ni alloy with hcp structure based on the high pressure experiments (Tateno et al., 2012) and hence the physical properties of hcp iron (epsilon-iron) are keys for understanding the dynamics of the inner core. Recent seismic observations suggest the variation in grain size in the inner core (Monnereau et al., 2010). It is important to understand the variation in grain size for constraints of the dynamics of the inner core because grain size is controlled by the growth rate and growth rate gives us information on time scale of the inner core growth and/or deformation. In this study, we experimentally determine the grain growth rate of epsilon-iron to understand the dynamics of inner core.
epsilon-iron is only stable at high pressure and it is unquenchable to an ambient condition. Therefore, in this study, we conduct in situ high pressure experiments to determine the grain growth rate of epsilon-iron. We prepared polycrystalline iron of starting material by multi-directional forging (MDF) on highly purity iron rod to avoid oxidation during sintering. In the high pressure experiment, the starting materials was compressed in a Kawai-type high pressure apparatus equipped with sintered diamond anvils with 1.0 truncated edge length at BL04B1, SPring-8. At the pressure of 50-60 GPa, sample was heated for several hours to determine the grain growth rates. Grain growth can be detected by the reduction of number of diffraction spots on the two-dimensional detector with monochromatic X-ray (Offerman et al., 2002) with annealing time.
In the experiments, we observed the reduction of the number of diffracted spots, meaning that grain growth occurs during annealing experiments. For example, the number of diffraction spots reduced to 50 % after annealing at 1300 K for two hours. By extrapolating the present data, we may constrain the translation dynamics of the inner core (Alboussiere et al., 2010) in comparison with seismic observation.

Monnereau, M., Calvet, M., Margerin, L., Souriau, A. (2010) Lopsided growth of earth's inner core, Science, 328, 1014-1017.
Alboussiere, T., Deguen, R., Melzani, M. (2010) Melting-induced stratification above the earth's inner core due to convective translation, Nature, 466, 744-747.
Offerman, S. E., van Dijk, N. H., Sietsma, J., Grigull, S., Lauridsen, E. M., Margulies, L., Poulsen, H. F., Rekveldt, M., van der Zwaag, S. (2002) Grain nucleation and growth during phase transformations, Science, 298, 1003-1005.
Tateno, S., Hirose, K., Komabayashi, T., Ozawa, H., Ohishi, Y. (2012) The structure of Fe-Ni alloy in earth's inner core, Geophy. Res. Lett., 39, L12305.