日本地球惑星科学連合2015年大会

講演情報

インターナショナルセッション(口頭発表)

セッション記号 S (固体地球科学) » S-IT 地球内部科学・地球惑星テクトニクス

[S-IT03] Structure and dynamics of Earth and Planetary deep interiors

2015年5月25日(月) 16:15 〜 18:00 106 (1F)

コンビーナ:*芳野 極(岡山大学地球物質科学研究センター)、田中 聡(海洋研究開発機構 地球深部ダイナミクス研究分野)、趙 大鵬(東北大学大学院理学研究科附属地震・噴火予知研究観測センター)、亀山 真典(国立大学法人愛媛大学地球深部ダイナミクス研究センター)、John Hernlund(Earth-Life Science Institute, Tokyo Institute of Technology)、座長:芳野 極(岡山大学地球物質科学研究センター)、中島 陽一(理化学研究所放射光科学総合研究センター)

17:30 〜 17:45

[SIT03-13] 下部マントルにおける鉄のスピン転移の統一像に向けて

*藤野 清志1入舩 徹男1 (1.愛媛大学地球深部ダイナミクス研究センター)

キーワード:鉄のスピン転移, 3価鉄, Mg-ぺロブスカイト, ポストMg-ぺロブスカイト, Al 量, 陽イオン交換反応

The pressure-induced spin transition of iron in the lower mantle minerals deeply affects the structures and physical properties of the lower mantle minerals, and there by the dynamics of the lower mantle. So far, many experimental and theoretical studies have been carried out to clarify the spin transition of iron in the lower mantle minerals. However, there is still a controversy about the existence and the pressure dependence of the spin transition of iron in Mg-perovskite (Pv) and post-Mg-perovskite (PPv) at the lower mantle conditions. Pv and PPv in the lower mantle are considered to involve both Fe2+ and Fe3+, and Al as minor elements. Until recently, the controversy had been mainly about the spin transition of Fe2+. Now, the spin transition of Fe2+ in Pv and PPv seems to be settling down in the direction that Fe2+ in both Pv and PPv remains high spin (HS) at the dodecahedral site (A site) at the lower mantle conditions (Hsu et al., 2011; Yu et al., 2012).
On the other hand, with the spin transition of Fe3+ there are still large discrepancies among the reports, particularly related to the Al content involved in Pv and PPv. Some experimental results indicate that Fe3+ becomes low spin (LS) at the octahedral site (B site) in Al-bearing Pv (above ca. 70 GPa) and PPv (whole stability region) (Catalli et al., 2011; Fujino et al., 2012, 2013), while other experimental results indicate that Fe3+ coexisting with Fe2+ at the A site prefers to occupy the A site and remains HS even at high pressure (Mao et al., 2014; Dorfman et al., 2014). Meanwhile first-principles calculations indicate that Fe3+ remains HS at the A site in Al-bearing Pv and PPv (Hsu et al., 2012).
In the presentation, the possible explanations to resolve the above discrepancies among the previous reports to obtain the unified image of the spin transition of iron in the lower mantle minerals are proposed.