日本地球惑星科学連合2016年大会

講演情報

インターナショナルセッション(口頭発表)

セッション記号 H (地球人間圏科学) » H-TT 計測技術・研究手法

[H-TT08] Geoscientific applications of high-definition topography and geophysical measurements

2016年5月22日(日) 10:45 〜 12:00 202 (2F)

コンビーナ:*早川 裕弌(東京大学空間情報科学研究センター)、佐藤 浩(日本大学文理学部)、内山 庄一郎(国立研究開発法人防災科学技術研究所)、楠本 成寿(富山大学大学院理工学研究部(理学))、Wasklewicz Thad(East Carolina University)、Giordan Daniele(National Research Council, Rome)、小花和 宏之(千葉大学環境リモートセンシング研究センター)、座長:楠本 成寿(富山大学大学院理工学研究部(理学))、早川 裕弌(東京大学空間情報科学研究センター)

10:45 〜 11:05

[HTT08-06] Multi-resolution analysis of landscape characteristic length scales

★招待講演

Paola Passalacqua1Harish Sangireddy1、*Colin Stark2 (1.Department of Civil Architectural and Environmental Engineering and Center for Research in Water Resources, University of Texas at Austin、2.Lamont-Doherty Earth Observatory, Columbia University)

キーワード:high resolution topography, roughness, hillslope

The wide availability of high resolution topography data has revolutionized the way we analyze landscapes. Information at fine scales allows the extraction of geomorphic features such as channel heads and the detection of geomorphic process transitions.
Here we present a technique called multi-resolution analysis (MRA) to analyze landscapes across scales, quantify how the probability density function of topographic attributes changes with scale, and identify characteristic length scales. The method consists of convolving high resolution data with Gaussian kernels of increasing standard deviation to obtain topography data at different scales. At each scale, we compute the probability density function of curvature and topograhic index, defined as the ratio of slope and contributing area in logarithmic scale. By analyzing the probability density function of each attribute across scales, we detect scaling breaks. Through the analysis of 1D and 2D synthetic signals as well as the analysis of numerically simulated landscapes under controlled initial and boundary conditions, we equate the detected scaling breaks to the scale of surface roughness and the median hillslope length scale. The MRA approach is then applied to various real landscapes to quantify their characteristic length scales.