日本地球惑星科学連合2016年大会

講演情報

口頭発表

セッション記号 M (領域外・複数領域) » M-TT 計測技術・研究手法

[M-TT28] 地球化学の最前線:未来の地球化学を展望して

2016年5月22日(日) 09:00 〜 10:30 A04 (アパホテル&リゾート 東京ベイ幕張)

コンビーナ:*小畑 元(東京大学大気海洋研究所海洋化学部門海洋無機化学分野)、角野 浩史(東京大学大学院総合文化研究科広域科学専攻相関基礎科学系)、横山 哲也(東京工業大学大学院理工学研究科地球惑星科学専攻)、平田 岳史(京都大学大学院理学研究科地球惑星科学専攻)、角皆 潤(名古屋大学大学院環境学研究科)、高橋 嘉夫(東京大学大学院理学系研究科地球惑星科学専攻)、橘 省吾(北海道大学大学院理学研究院自然史科学専攻地球惑星システム科学分野)、鈴木 勝彦(国立研究開発法人海洋研究開発機構・海底資源研究開発センター)、下田 玄(産業技術総合研究所地質調査総合センター)、鍵 裕之(東京大学大学院理学系研究科附属地殻化学実験施設)、横山 祐典(東京大学 大気海洋研究所 高解像度環境解析研究センター)、座長:角野 浩史(東京大学大学院総合文化研究科広域科学専攻相関基礎科学系)、横山 哲也小畑 元(東京大学大気海洋研究所海洋化学部門海洋無機化学分野)

09:30 〜 09:45

[MTT28-03] UV-LA-MC-ICP-MSを用いた高精度塩素同位体分析法の開発

*遠山 知亜紀1木村 純一1常 青1Vaglarov Bogdan S.1黒田 潤一郎1 (1.海洋研究開発機構地球内部物質循環研究分野)

キーワード:塩素同位体、UV-LA-MC-ICP-MS

Chorine is the dominant anion in many geological fluids and one of the main volatile components on Earth. It has high partition coefficients in aqueous fluid (Bureau et al. 2000) and is enriched in seawater, pore fluid and sediment, but depleted in the mantle. Chlorine has two stable isotopes: 35Cl and 37Cl. The isotope ratios of 37Cl/35Cl are usually expressed by δ-notation relative to Standard Mean Ocean Chloride (SMOC) as
δ37Cl = [(37Cl/ 35Cl)sample / (37Cl/ 35Cl)SMOC – 1] × 1000. (Eggenkamp 2014)
Their large relative mass difference suggests that these isotopes should fractionate during reactions between aqueous chloride solutions and solid phases in which Cl is at least partly covalently bound. Taken together, the δ37Cl also may provide a good tracer of subducted materials into the mantle. Measurement of chlorine isotope ratios has been performed by the gas source isotope ratio mass spectrometry (IRMS) (Kaufmann et al., 1984), the positive and negative thermal ionization mass spectrometry (P-TIMS / N-TIMS) (Xiao and Zhang 1992; Desaulniers et al., 1986) and the inductively coupled plasma mass spectrometry (ICPMS) (Fietzke et al., 2008).
We report a new rapid high-precision determination method of chlorine isotope ratios in halite and AgCl pellet formed from seawater and igneous rock samples. Use of a 266 nm ultra violet–femtosecond laser ablation (UV-FsLA) provided quantitative sampling of halite and AgCl, and enabled precise determination of 37Cl/35Cl isotope ratios (δ37Cl) coupled with a multiple Faraday collector–inductively coupled plasma mass spectrometer (MFC-ICPMS). We used 36Ar+/38Ar+ as an external standard for the mass bias corrections between 39K+41K+, 36Ar1H+38Ar1H+40Ar1H+, and 35Cl+37Cl+ with isobaric overlap corrections between K+, ArH+, and Cl+ ions. Sulfur (36S+) isobar on 36Ar+ was indirectly monitored and corrected by a baseline modelling using 36Ar+/38Ar+ measurement. Those combined to accomplish an accurate and high-precision measurement of 37Cl+/35Cl+ ratios. Using the new analytical protocol, δ37Cl in the natural halite samples were analyzed by direct laser ablation. The δ37Cl in igneous rocks were analyzed by AgCl powder pellets produced after pyrohydrolysis separation and co-precipitation of the separated Cl with silver. The external reproducibility of δ37Cl measurement was ±0.2 ‰ 2SD (2-standard deviation) for halite and ±0.3 ‰ 2SD for AgCl rivaling to the gas source isotope ratio mass spectrometry. The new analytical protocol enabled a precise and rapid δ37Cl analysis of igneous rock samples from AgCl with as small as 4 µg chlorine. This is also the first report analyzing a high-precision δ37Cl in situ from halite of the same amount of chlorine.