日本地球惑星科学連合2016年大会

講演情報

インターナショナルセッション(口頭発表)

セッション記号 P (宇宙惑星科学) » P-EM 太陽地球系科学・宇宙電磁気学・宇宙環境

[P-EM04] Space Weather, Space Climate, and VarSITI

2016年5月22日(日) 09:00 〜 10:30 103 (1F)

コンビーナ:*片岡 龍峰(国立極地研究所)、プルキネン アンティ(NASAゴダード宇宙飛行センター)、海老原 祐輔(京都大学生存圏研究所)、三好 由純(名古屋大学宇宙地球環境研究所)、清水 敏文(宇宙航空研究開発機構宇宙科学研究所)、浅井 歩(京都大学宇宙総合学研究ユニット)、陣 英克(情報通信研究機構)、佐藤 達彦(日本原子力研究開発機構)、草野 完也(名古屋大学宇宙地球環境研究所)、宮原 ひろ子(武蔵野美術大学造形学部)、伊藤 公紀(横浜国立大学大学院工学研究院)、塩川 和夫(名古屋大学宇宙地球環境研究所)、中村 卓司(国立極地研究所)、余田 成男(京都大学大学院理学研究科地球惑星科学専攻)、一本 潔(京都大学大学院理学研究科附属天文台)、石井 守(国立研究開発法人情報通信研究機構)、座長:片岡 龍峰(国立極地研究所)

09:30 〜 09:45

[PEM04-03] Solar Flare Prediction with Vector Magnetogram and Chromospheric Brightening using Machine-learning

*西塚 直人1久保 勇樹1杉浦 孔明1田 光江1亘 慎一1石井 守1 (1.国立研究開発法人 情報通信研究機構)

キーワード:Space Weather Forecast, Solar Flare, Statistical Analysis, Machine-Learning, Photospheric vector Magnetic field, Chromosphere

Solar flares have been empirically predicted based on the solar surface observations. Before large class of flares, photospheric magnetic field in the active region becomes complex and sharp magnetic neutral lines are formed. It is also known that chromospheric brightening recurrently occurs at around the neutral lines. In NICT, solar flares occurring in the next 24 hours have been predicted by scientists in the daily forecast operations, but the flare mechanism has not been well revealed and we still have a difficulty in predicting flares with high accuracy and good confidence. Currently, we can access huge amount of observation data, so we developed a system to automatically predict flares using the near real-time observation data by satellites and the machine-learning technique.
We used observation data sets taken by SDO and GOES satellites during 2010-2015: (1) line-of-sight direction magnetogram and vector magnetogram data by HMI/SDO, (2) lower chromospheric brightening data by AIA 1600 Angstrom filter/SDO, and (3) soft X-ray emission by GOES. Firstly, we automatically detect active regions using full-disk images of magnetogram every 1 hour, to predict a flare class occurring in the region in the next 24 hours. Secondly, we extract solar features for each region, i.e., the maximum magnetic field strength, the maximum gradient of magnetic field in the line-of-sight direction, the number of magnetic neutral lines, the maximum length of neutral lines, the magnetic free energy, the shear angle, the time variations of magnetic field configurations, the history of X/M-class flares, the background GOES X-ray emission, and the activity of chromospheric brightening. Thirdly, we apply the machine-learning technique to the dataset of solar features to predict flares. We divided the total data set into two for training and test. We adopted three machine-learning techniques for comparison: the support vector machine (SVM), the k-nearest neighbor (k-NN) and the extra random trees (ERT). As a result, we succeeded in achieving good prediction of X-class flares, as verified by the True Skill Score (TSS) larger than 0.7, which is better than human forecast operations (TSS~0.5). In this presentation, we would like to introduce our flare predictions model and to discuss flare triggering mechanism.