日本地球惑星科学連合2016年大会

講演情報

インターナショナルセッション(口頭発表)

セッション記号 P (宇宙惑星科学) » P-EM 太陽地球系科学・宇宙電磁気学・宇宙環境

[P-EM04] Space Weather, Space Climate, and VarSITI

2016年5月22日(日) 10:45 〜 12:15 103 (1F)

コンビーナ:*片岡 龍峰(国立極地研究所)、プルキネン アンティ(NASAゴダード宇宙飛行センター)、海老原 祐輔(京都大学生存圏研究所)、三好 由純(名古屋大学宇宙地球環境研究所)、清水 敏文(宇宙航空研究開発機構宇宙科学研究所)、浅井 歩(京都大学宇宙総合学研究ユニット)、陣 英克(情報通信研究機構)、佐藤 達彦(日本原子力研究開発機構)、草野 完也(名古屋大学宇宙地球環境研究所)、宮原 ひろ子(武蔵野美術大学造形学部)、伊藤 公紀(横浜国立大学大学院工学研究院)、塩川 和夫(名古屋大学宇宙地球環境研究所)、中村 卓司(国立極地研究所)、余田 成男(京都大学大学院理学研究科地球惑星科学専攻)、一本 潔(京都大学大学院理学研究科附属天文台)、石井 守(国立研究開発法人情報通信研究機構)、座長:片岡 龍峰(国立極地研究所)

11:45 〜 12:00

[PEM04-10] Empirical estimation of GICs from the geomagnetic data in Japan

*藤田 茂1藤井 郁子1桝田 祐里1 (1.気象庁気象大学校)

キーワード:geomagnetically induced current, transformer station, transfer function

Pulkkinen et al (2007) proposed the new method of estimating geomagnetically induced currents (GICs) at a transformer station by employing the linear relation between the GICs and the corresponding geomagnetic variations as
GIC(ω)=A(ω)By(ω)+B(ω)Bx(ω) (1)
By using the two transfer functions in the frequency domain (A(ω) and B(ω) in Eq. (1)), we obtain
GIC(t)=∫ A(τ)By(t-τ)dτ + ∫ B(τ)Bx(t-τ)dτ (2)
This method (the transfer function method) successfully reproduced the GICs from the geomagnetic variations in Finland [Pulkkinen et al., 2007] and in Hokkaido [Pulkkinen et al., 2010]. However, as the electrical conductivity distributions in both areas are rather uniform, it is important to evaluate how this method is applied to GICs observed at a station in other area of Japan with heterogeneous conductivity distribution. This is the motivation of this research. We employ one-minute values of the GICs observed at a transformer station and those of the geomagnetic data at Kakioka Magnetic Observatory during the Halloween event.

To confirm how this method is effective, we need to investigate how the GICs during one event are reproduced from the geomagnetic data in this event with the transfer function obtained from the other event. Fortunately, the Halloween event has two activities on Oct/30 (the event #1) and on Oct/31 (the event #2), we can calculate separately two transfer functions for the two events. First, we confirm that the transfer functions obtained from the events are essentially identical. This fact indicates that the transfer function method by Pulkkinen et al. (2007) is applicable to the GIC data in Japanese transformer station. Next, the GICs in the event #1/#2 are estimated from the geomagnetic data in the event #2/#1 and the transfer function of the event #2/#1. When calculating GICs in time domain in Eq. (2), we noticed that the integral from t=0 to 50min reproduces sufficiently accurate GICs. This fact is a little bit different from Pulkkinen et al. (2007) who estimated the GICs through the integral only at t=0 and 1min. At last, we confirm that the reproduced GICs are essentially similar to the observed ones.

In the last, we estimate the GICs at the transformer station in the magnetic storm in 1989 which caused the large-scale blackout in Canada and US.

References
Pulkkinen, A., R. Pirjola, and A. Viljanen (2007), Determination of ground conductivity and system parameters for optimal modeling of geomagnetically induced current flow in technological systems, Earth Planets Space, 59, 999-1006.
Pulkkinen, A., R. Kataoka, S. Watari, and M. Ichiki (2010), Modeling geomagnetically induced currents in Hokkaido, Japan Advances in Space Research, 46, 9, 1087-1093.