日本地球惑星科学連合2016年大会

講演情報

口頭発表

セッション記号 P (宇宙惑星科学) » P-EM 太陽地球系科学・宇宙電磁気学・宇宙環境

[P-EM17] 宇宙プラズマ理論・シミュレーション

2016年5月25日(水) 09:00 〜 10:30 302 (3F)

コンビーナ:*梅田 隆行(名古屋大学 宇宙地球環境研究所)、天野 孝伸(東京大学 地球惑星科学専攻)、成行 泰裕(富山大学人間発達科学部)、中村 匡(福井県立大学)、杉山 徹(国立研究開発法人海洋研究開発機構 地球情報基盤センター)、座長:成行 泰裕(富山大学人間発達科学部)、齊藤 慎司(名古屋大学 大学院理学研究科)

10:00 〜 10:15

[PEM17-17] Expanding box model of quasilinear theory including the anisotropy-driven instabilities and collisional dissipation

*Seough Jungjoon1,2Yasuhiro Nariyuki1Peter H. Yoon3,4 (1.Faculty of Human Development, University of Toyama, Japan、2.JSPS Postdoctoral Fellow、3.University of Maryland, College Park, USA、4.School of Space Research, Kyung Hee University, Korea)

キーワード:solar wind proton, temperature anisotropy-driven kinetic instability, expanding box model of quasilinear theory, collisional dissipation

Measurements in situ of proton temperature anisotropy were found to be bounded by the marginal stability conditions of the kinetic instabilities driven by proton temperature anisotropies. This implies that these instabilities are indeed active and play an important role in limiting the range of temperature anisotropies observed in the expanding solar wind. However, the vast majority of the observed data distribution in the parameter space, denoted by proton temperature anisotropy and parallel beta, are found near isotropic state instead of being near the instability thresholds, so that they could not be explained by the local kinetic instability alone. Since the solar wind itself expands in inhomogeneous interplanetary space, the solar wind expansion would lead to a development of excessive parallel temperature anisotropy. Moreover, the binary particle collisions are thought to contribute to the temperature isotropization of the solar wind plasma. In order to understand the measured proton properties in the solar wind, various kinetic processes responsible for the global dynamics, such as the solar wind expansion and binary collisions, and the local kinetic instabilities should be taken into account. In the present work, we employ quasilinear theory of the expanding box model to investigate how the solar wind expansion and the instability driven collisionless dissipation as well as the collisional dissipation affect the dynamic evolution of the solar wind proton.