日本地球惑星科学連合2016年大会

講演情報

インターナショナルセッション(ポスター発表)

セッション記号 P (宇宙惑星科学) » P-PS 惑星科学

[P-PS01] Outer Solar System Exploration Today, and Tomorrow

2016年5月22日(日) 17:15 〜 18:30 ポスター会場 (国際展示場 6ホール)

コンビーナ:*木村 淳(東京工業大学地球生命研究所)、藤本 正樹(宇宙航空研究開発機構・宇宙科学研究本部)、笠羽 康正(東北大学大学院 理学研究科 地球物理学専攻)、佐々木 晶(大阪大学大学院理学研究科宇宙地球科学専攻)、谷川 享行(産業医科大学医学部)、関根 康人(東京大学大学院理学系研究科地球惑星科学専攻)、Sayanagi Kunio(Atmospheric and Planetary Sciences Department, Hampton University)、Vance Steven(Jet Propulsion Laboratory, Caltech)

17:15 〜 18:30

[PPS01-P02] ガニメデ地下海の安定性

*木村 淳1鎌田 俊一2Vance Steven3Hussmann Hauke4 (1.東京工業大学地球生命研究所、2.北海道大学、3.ジェット推進研究所、4.ドイツ航空宇宙センター)

The outer solar system provides potential habitats for extra-terrestrial life. Past spacecraft’s and telescopic observations support that the Jovian icy moons may harbor water oceans beneath the icy crusts. However evidence for oceans is not definitive and awaits confirmation measurements. Also their depth and composition remain unclear, as do their stability and variability with time.
Here we focus on Ganymede, the largest moon in the Solar System and the primary target the Jupiter Icy Moons Explorer (JUICE). To investigate the stability of an ocean (structural, thermal and compositional change through time) assumed to be initially in an entirely liquid state, we performed numerical simulations for the internal thermal evolution using an one-dimensional spherically symmetric model for the convective and conductive heat transfer, with radial dependence of viscosity, heat source distribution, and other material properties. We take into account the energy due to decay of long-lived radioactive elements and also evaluate the effect of tidal heating. To see the temporal change of the boundary position between solid ice layers including ice shell and high-pressure ice mantle, we also evaluate the energy balance at the phase boundaries between the solid and liquid H2O layer, and the movements of the positions of these boundaries are calculated by evaluating the heat balance between incoming and outgoing flux at the boundaries considering with latent heat (classically known as a Stefan problem).