日本地球惑星科学連合2016年大会

講演情報

ポスター発表

セッション記号 S (固体地球科学) » S-CG 固体地球科学複合領域・一般

[S-CG63] 変動帯ダイナミクス

2016年5月23日(月) 17:15 〜 18:30 ポスター会場 (国際展示場 6ホール)

コンビーナ:*深畑 幸俊(京都大学防災研究所)、重松 紀生(独立行政法人産業技術総合研究所活断層・火山研究部門)、加藤 愛太郎(名古屋大学大学院環境学研究科)、岩森 光(海洋研究開発機構・地球内部物質循環研究分野)、池田 安隆(東京大学大学院理学系研究科地球惑星科学専攻)、竹下 徹(北海道大学大学院理学院自然史科学専攻)

17:15 〜 18:30

[SCG63-P01] 封圧下での含水砂岩の弾性波速度と電気伝導度の同時測定

*南部 美菜子1渡辺 了1 (1.富山大学大学院理工学教育部)

キーワード:地震波速度、電気伝導度、流体、間隙流体圧

Pore-fluid pressure is a critical parameter that governs geodynamic processes including seismic activities. Its evaluation through geophysical observations provides us insights into these processes. The quantitative evaluation requires a thorough understanding of the influence of pore-fluid pressure on geophysical parameters, such as seismic velocity and electrical conductivity. We have studied elastic wave velocities and electrical conductivity in a brine-saturated sandstone under different confining and pore-fluid pressures.
Berea sandstone (OH, USA) was selected as a rock sample for its high porosity (~20%) and permeability (~10-13 m2). It is mainly composed of subangular quartz grains, with small amounts of feldspar grains. Microstructural examinations showed that clay minerals (e.g., kaolinite) and carbonates (e.g., calcite) fill many gaps between grains. The grain size is 100-200 micrometers. Cylindrical samples (D=26 mm, L=30 mm) were saturated with 0.1 M KCl aqueous solution. Measurements have been made using a 200 MPa hydrostatic pressure vessel, in which confining and pore-fluid pressures can be separately controlled. An aqueous pore-fluid is electrically insulated from the metal work by using plastic devices. Elastic wave velocity was measured with the pulse transmission technique (PZT transducers, f=2 MHz), and electrical conductivity the two-electrode method (f=40 - 100 kHz).
Confining and pore-fluid pressures work in opposite ways. Increasing confining pressure closes pores, while increasing pore-fluid pressure opens them. For a given pore-fluid pressure, both compressional and shear velocities increase with increasing confining pressure, while electrical conductivity decreases. When confining pressure is fixed, velocity decreases with increasing pore-fluid pressure while conductivity increases. The closure and opening of pores can explain observed changes of velocity and conductivity. For a given differential pressure, velocities show no significant change with increasing confining pressure, while conductivity decreases. The decrease in conductivity might be caused by irreversible compaction of clays under confining pressures.