日本地球惑星科学連合2018年大会

講演情報

[EE] Eveningポスター発表

セッション記号 B (地球生命科学) » B-AO 宇宙生物学・生命起源

[B-AO01] アストロバイオロジー

2018年5月22日(火) 17:15 〜 18:30 ポスター会場 (幕張メッセ国際展示場 7ホール)

コンビーナ:薮田 ひかる(広島大学大学院理学研究科地球惑星システム学専攻)、杉田 精司(東京大学大学院理学系研究科地球惑星科学専攻)、深川 美里(名古屋大学、共同)、藤島 皓介(東京工業大学地球生命研究所)

[BAO01-P10] Ground-based simulation of Enceladus fly-through plume sampling and analysis using ultra-low density aerogel

*藤島 皓介1高萩 航2,4瀬尾 海渡4齋藤 宏貴4本郷 やよい1田端 誠5渋谷 岳造2高井 研2高野 淑識2矢野 創3 (1.東京工業大学 地球生命研究所、2.海洋研究開発機構、3.宇宙航空研究開発機構 宇宙科学研究所、4.慶應義塾大学、5.千葉大学大学院理学研究院)

キーワード:生命探査、超高速衝突、有機分子、ペプチド、シリカエアロゲル、宇宙探査

Understanding the variety and the distribution of the building blocks of life in space is one of the important scientific themes for Astrobiology. In situ detection of organic molecules from extraterrestrial bodies thus provide insight into ongoing chemical evolution of building blocks of life, and possibly the detection of extraterrestrial life itself. Here we conducted a ground-based simulation of Enceladus fly-through plume sampling, extraction and analysis of two simple organic molecules, Glycine (Gly) and Glycyl-L-alanine (GlyAla) dipeptide. Hypervelocity impact experiment was carried out at JAXA/ISAS using pure Gly and GlyAla crystal as well as freeze-dried sample of 10% w/w organic-NaCl mixture. Approximately 5 mg of powder samples are placed into sabot projectile and accelerated to a speed of 4-6 km/sec and captured by ultra-low density (10 mg/cc) hydrophobic and hydrophilic silica aerogels. Aerogels with impact tracks are transferred to order-made aerogel container made of space compatible material polyetheretherketone (PEEK) and soaked by 5 ml 75% acetonitrile water solution for sufficient diffusion of organic molecules. Extracted solution was freeze-dried and resuspended in 100 μl water and analyzed using LC-QTOF-MS. So far, we have obtained LC profile/MS spectra corresponding to intact GlyAla from both hydrophobic and hydrophilic aerogel with sample recovery rate of approximately 0.1%. Ongoing analysis will further provide information on Glycine as well as degree of impact-driven organic alteration to demonstrate the capability ultra-low density aerogel for analysis of astrobiologically-relevant organic molecules in future spaceflight missions.