日本地球惑星科学連合2018年大会

講演情報

[JJ] 口頭発表

セッション記号 M (領域外・複数領域) » M-IS ジョイント

[M-IS10] 古気候・古海洋変動

2018年5月23日(水) 09:00 〜 10:30 A08 (東京ベイ幕張ホール)

コンビーナ:岡崎 裕典(九州大学大学院理学研究院地球惑星科学部門)、磯辺 篤彦(九州大学応用力学研究所)、北村 晃寿(静岡大学理学部地球科学教室、共同)、佐野 雅規(早稲田大学人間科学学術院)、長谷川 精(高知大学理工学部)、岡 顕(東京大学大気海洋研究所)、加 三千宣(愛媛大学沿岸環境科学研究センター)、座長:岡崎 裕典

09:45 〜 10:00

[MIS10-04] 固体地球活動に起因する中期中新世の温暖化:オスミウム同位体と炭素循環モデルを用いた検証

★招待講演

*後藤 孝介1Tejada Maria Luisa2Ravizza Gregory3伊藤 孝4黒田 潤一郎5,2鈴木 勝彦2 (1.産業技術総合研究所、2.海洋研究開発機構、3.ハワイ大学、4.茨城大学、5.東京大学)

キーワード:中期中新世温暖期、オスミウム同位体、炭素循環

The middle Miocene Climatic Optimum (MMCO) represents a prolonged global warming event which is associated with a long-lasting positive carbon-isotope excursion [1]. This climatic change and fluctuation in the global carbon cycle interrupted a general cooling trend during the Cenozoic and may have reshaped biotas over local to global scales [1, 2]. However, underlying mechanism responsible for the MMCO and the isotope excursion has remained evasive. To understand the mechanisms involved, we obtained a high-resolution Os isotope (187Os/188Os) record of Miocene seawater using (hemi)pelagic sediments from ODP Sites 1184 and 1218 (Leg 184 and 199, respectively) and IODP Sites U1338 and U1438 (Expedition 321 and 351, respectively), following the leaching method of Ravizza and Paquay (2008) [3] to derive only hydrogenous Os isotopic composition. Our result was generally consistent with previous low-temporal-resolution record [4]. However, we found a small negative Os isotope anomaly at ~14-16 Ma: i.e., 187Os/188Os gradually decreased between 20-16 Ma, showed the lowest value of ~0.7 at ~14-16 Ma, and then gradually increased to ~0.85 by 11 Ma. Such a negative isotope excursion can be explained by ~50% increase of non-radiogenic Os input from the mantle sources which seems to be consistent with the eruption of Columbia River flood basalt and a rapid seafloor spreading during the middle Miocene [5, 6]. We employed a carbon cycle model to test the biogeochemical responses to 50% increase of magmatic activity similar to that of Kump and Arthur (1999) [7] but considers greenhouse effect of atmospheric CO2 and temperature dependence of silicate weathering rate. Seawater phosphorous concentration was also calculated by assuming that seawater phosphorous concentration is a linear function of the weathering rate. The model demonstrates that the perturbation in magmatic activity can elevate pCO2 to ~400 ppmv from pre-industrial CO2 level (280 ppmv) and cause a positive carbon excursion of ~1 per mil due to enhanced organic carbon burial. These values are consistent with previous boron and carbon isotope records of pelagic sediments [1], suggesting that the eruption of Columbia River flood basalt and the rapid seafloor spreading triggered the biogeochemical perturbations during the middle Miocene.
References: [1] Foster et al. (2012) Earth Planet. Sci. Lett. 341; [2] Finarelli & Badgley (2010) Proc. R. Soc. B 277; [3] Ravizza & Paquay (2008) Paleoceanogr. 23; [4] Peucker-Ehrenbrink & Ravizza (2000) Terra Nova 12; [5] Wilson (1996) Geophys. Res. Lett. 23; [6] Hooper et al. (2002) Geol. Soc. Am. Bull. 114; [7] Kump & Arthur (1999) Chem. Geol. 161.