日本地球惑星科学連合2018年大会

講演情報

[EJ] 口頭発表

セッション記号 P (宇宙惑星科学) » P-PS 惑星科学

[P-PS05] 月の科学と探査

2018年5月23日(水) 09:00 〜 10:30 A01 (東京ベイ幕張ホール)

コンビーナ:長岡 央(早稲田大学理工学術院総合研究所)、諸田 智克(名古屋大学大学院環境学研究科)、西野 真木(名古屋大学宇宙地球環境研究所、共同)、鹿山 雅裕(東北大学大学院理学研究科地学専攻)、座長:諸田 智克(名古屋大学大学院 環境学研究科)、大竹 真紀子(JAXA)

09:45 〜 10:00

[PPS05-04] Analysis of the High Latitude Area of the Moon with Spectral Profiler Data : On the Effectiveness of Sunlit - Shade Area Classification by Deep Learning

*經田 原弘1石原 吉明2田中 智2井上 博夏2大竹 真紀子2大嶽 久志2 (1.東京大学、2.JAXA)

キーワード:月、かぐや、スペクトルプロファイラ、極域

The lunar explorer SELENE acquired a large mass of information. Among them, the Spectral Profiler (SP) data of visible to near infrared spectral with high S/N ratio, which was obtained more than 10 million shots at the latitude higher than 80 degrees, contains useful mineralogical information. In practical, all the SP data is usually corrected under the assumption of sunlit condition, which may not be affected so much taken in the low latitude area. However, accurate data correction by sunshine conditions (including secondary reflected) should be done in order to analyze the data properly in the high latitude area. Currently, only spectral with very high S/N ratio in the sunlit area are used for analysis, however, such data is difficult to find in the polar region. For this reason, there are many data remained to be analyzed. Also, “Half-shaded” area at where only the secondary reflected light is exposed should be focused on to search for volatile elements. In this study, we developed a automatic classifier of sunlit and shade area using deep learning. And the overall percentage of correct answer rate was about 98%.
As of now, we completed preliminary calculation and made sunlit-sunshade information data for each spectral data. Further development is under investigation using Pyramid Scene Parsing Network to deduce more accurate result.