日本地球惑星科学連合2018年大会

講演情報

[EE] 口頭発表

セッション記号 S (固体地球科学) » S-IT 地球内部科学・地球惑星テクトニクス

[S-IT22] 核-マントルの相互作用と共進化

2018年5月24日(木) 09:00 〜 10:30 国際会議室(IC) (幕張メッセ国際会議場 2F)

コンビーナ:飯塚 毅(東京大学)、渋谷 秀敏(熊本大学大学院先端科学研究部基礎科学部門地球環境科学分野)、土屋 卓久(愛媛大学地球深部ダイナミクス研究センター、共同)、太田 健二(東京工業大学大学院理工学研究科地球惑星科学専攻)、座長:出倉 春彦山崎 大輔

09:15 〜 09:30

[SIT22-32] Anisotropic thermal conductivity of hcp iron and the implications for the Earth’s inner core

*太田 健二1西原 遊2佐藤 雄輝1廣瀬 敬3,4八木 貴志5河口 沙織6平尾 直久6大石 泰生6 (1.東京工業大学理学院地球惑星科学系、2.愛媛大学地球深部ダイナミクス研究センター、3.東京工業大学地球生命研究所、4.東京大学大学院理学系研究科 地球惑星科学専攻、5.産業技術総合研究所計測標準総合センター、6.高輝度光科学研究センター)

キーワード:コア、熱伝導率、hcp鉄、高圧実験

At some time in the past, the Earth’s liquid iron core began to solidify at the center, resulting in a growing solid inner core, which has a key role in powering the Earth’s dynamo action. The inner core is known to be elastically anisotropic. The cause of the seismic anisotropy in the inner core may be explained by the crystallographic preferred orientation (CPO) of hexagonal closed packed (hcp) iron that is widely believed to be a main component of the inner core. However, it is still unclear how to occur and sustain such CPO of the inner core material although many hypotheses have been proposed.

Anisotropy in the thermal conductivity of hcp iron may have important implications for the structure and thermal evolution of the Earth’s inner core (Secco and Balog, 2001). However, the conductivity anisotropy in hcp iron has never been examined. The hcp phase of iron is stable above 13 GPa and unquenchable to ambient conditions, so that in-situ high-pressure measurement of anisotropic conductivity is required. In this study, we investigated anisotropy in thermal conductivity of hcp iron to 42.9 GPa based on synchrotron X-ray diffraction measurements and the pulsed light heating thermoreflectance technique in a diamond anvil cell. The results demonstrate that the thermal conductivity of hcp iron along c axis is three to four times as large as that along a axis. Such anisotropic thermal conductivity in hcp iron could sustain crystal alignment in the inner core that causes seismic anisotropy. In addition, the anisotropic conductivity in hcp iron could be a cause of the discrepancy in the experimentally determined thermal conductivities of iron at the core conditions (Konôpková et al., 2016; Ohta et al., 2016).



References
Secco, R.A., & Balog, P.S. On the possibility of anisotropic heat flow in the inner core. Can. J. Earth Sci. 38, 975–982 (2001).
Konôpková, Z., McWilliams, R., Gómez-Pérez, N. & Goncharov, A. Direct measurement of thermal conductivity in solid iron at planetary core conditions. Nature 534, 99–101 (2016).
Ohta, K., Kuwayama, Y., Hirose, K., Shimizu, K. & Ohishi, Y. Experimental determination of the electrical resistivity of iron at Earth’s core conditions. Nature 534, 95–98 (2016).