*椋平 祐輔1、直井 誠2、Michael Fehler3、森谷 祐一5、伊藤 高敏1、浅沼 宏4、Markus Häring6 (1.東北大学 流体科学研究所、2.京都大学 防災研究所、3.マサチューセッツ工科大学 地球資源研究所、4.産業技術総合研究所 福島再生可能エネルギー研究所、5.東北大学 工学部、6.Häring GeoProject)
セッション情報
[E] ポスター発表
セッション記号 S (固体地球科学) » S-SS 地震学
[S-SS04] New methods for seismicity characterization
2019年5月26日(日) 17:15 〜 18:30 ポスター会場 (幕張メッセ国際展示場 8ホール)
コンビーナ:Francesco Grigoli(ETH-Zurich, Swiss Seismological Service)、加藤 愛太郎(東京大学地震研究所)、青木 陽介(東京大学地震研究所)、Claudio Satriano(Institut de Physique du Globe de Paris)
In the last two decades the number of high quality seismic instruments being installed around the world has grown exponentially and probably will continue to grow in the coming decades. This data explosion has shown the limits of the current standard routine seismic analysis, often performed manually by seismologists. Exploiting the massive amount of data is a challenge that can be overcome by using new generation, fully automated and noise robust seismic processing techniques. In the last years waveform-based detection and location methods have grown in popularity and their application have dramatically improved seismic monitoring capability. More recently, Machine Learning techniques, which are a perfect playground for data-intensive applications, are showing promising results in seismicity characterization applications opening new horizons for the development of innovative, fully automated and noise robust seismic analysis methods. Such techniques are particularly useful when working with datasets characterised by a massive number of weak events with low signal-to-noise ratio, such as those collected in induced seismicity and volcanic monitoring operations. This session aims to bring to light new methods that can be applied to large datasets, either retro-actively or in near-real time, to characterize seismicity (i.e. detection, location, magnitude and source mechanisms estimation) at different scales and in different environments. We thus encourage contributions that demonstrate how the proposed methods helps improve our understanding of earthquake and/or volcanic processes.
*Claudio Satriano1、Eszter Király-Proag2、Pascal Bernard1、Stefan Wiemer2 (1.Institut de Physique du Globe de Paris, France、2.ETH Swiss Federal Institute of Technology Zurich, Switzerland)
*Francesco Grigoli1、Simone Cesca2、Alessandro Vuan3、Filippo Broggini1、John Clinton1、Stefan Wiemer1 (1.ETH-Zurich, Switzerland、2.GFZ-Potsdam, Germany、3.OGS-Trieste, Italy)
[SSS04-P04] Automatic Earthquake Locating by Stacking Characteristic Functions in a Source Scanning Method
★Invited Papers
*Hilary Chang1、Alison Malcolm1、Frédérick Massin2、Francesco Grigoli2 (1.Memorial University of Newfoundland, Earth Sciences, Canada、2. ETH Zurich, Department of Earth Sciences, Zürich, Switzerland )