日本地球惑星科学連合2019年大会

講演情報

[J] ポスター発表

セッション記号 P (宇宙惑星科学) » P-CG 宇宙惑星科学複合領域・一般

[P-CG25] 惑星大気圏・電磁圏

2019年5月28日(火) 17:15 〜 18:30 ポスター会場 (幕張メッセ国際展示場 8ホール)

コンビーナ:関 華奈子(東京大学大学院理学系研究科)、今村 剛(東京大学大学院 新領域創成科学研究科)、前澤 裕之(大阪府立大学大学院理学系研究科物理科学科)、寺田 直樹(東北大学大学院理学研究科)

[PCG25-P10] 磁気圏電子とエンケラドス衛星起源H2Oとの弾性衝突によるピッチ角散乱:テスト粒子シミュレーション

*田所 裕康1加藤 雄人2 (1.武蔵野大学、2.東北大学)

キーワード:エンケラドス、ピッチ角散乱、電子ー中性衝突、テスト粒子シミュレーション

Water group neutrals (H2O, OH, and O) in Saturn’s inner magnetosphere play the dominant role in loss of energetic electrons and ions because of abundance of the neutrals [e.g., Paranicas et al., 2007; Sittler et al., 2008]. The observations of injected plasmas in the inner magnetosphere suggest that these particles do not survive very long time due to the neutral cloud originated from Enceladus [e.g., Paranicas et al., 2007; 2008]. Thus, the previous studies suggested that the neutral cloud contributes to loss processes of plasma in the inner magnetosphere. However, little has been reported on a quantitative study of the electron loss process due to electron-neutral collisions.

In this study, we focus on the elastic collisional loss process with neutral H2O originated from Enceladus. Conducting one dimensional test particle simulation, Tadokoro et al., [2014] examined the time variations of equatorial electron pitch angle distribution and electrons within loss cone through 1keV electron pitch angle scattering due to elastic collisions around Enceladus. The result showed that the electrons of 11.4 % are lost in ~380 sec. The time corresponds to the time scale of the co-rotation of the flux tube passing through the region of the dense H2O in the vicinity of Enceladus. Assuming the uniform azimuth H2O density structure in the Enceladus torus, they estimated the electron loss rate of 33% during one co-rotation.

Next remaining issue is a calculation of energy dependent electron loss rate. We show the loss rates through pitch angle scattering of electrons with 500 eV – 50keV and the comparison of the loss rates between the high (in the vicinity of Enceladus) and low (in the Enceladus torus) H2O density regions. We also show the calculation errors by making several times calculations.