JpGU-AGU Joint Meeting 2020

講演情報

[J] 口頭発表

セッション記号 H (地球人間圏科学) » H-RE 応用地質学・資源エネルギー利用

[H-RE13] 資源地質学

コンビーナ:大竹 翼(北海道大学大学院工学研究院 環境循環システム部門)、高橋 亮平(秋田大学大学院国際資源学研究科)、野崎 達生(国立研究開発法人 海洋研究開発機構 海洋機能利用部門 海底資源センター)、実松 健造(国立研究開発法人 産業技術総合研究所 地圏資源環境研究部門 鉱物資源研究グループ)

[HRE13-06] SIMS分析により解明された沖縄トラフ海底熱水鉱床の極端な硫黄同位体分別

*野崎 達生1,2,3,4長瀬 敏郎5牛久保 孝行6清水 健二6石橋 純一郎7CK16-05航海 乗船者一同 (1.JAMSTEC・資源、2.東大・工、3.神戸大・理、4.千葉工大・次世代資源、5.東北大・総博、6.JAMSTEC・高知コア、7.九大・理)

キーワード:硫黄同位体、二次イオン質量分析装置、沖縄トラフ、バクテリア硫酸還元、伊是名海穴、伊平屋北海丘

Seafloor hydrothermal deposit, one of the types of seafloor mineral resources, has long been paid attention as a future producer of Cu-Pb-Zn±Au±Ag resources. This type of sulfide deposit is mainly composed of pyrite, sphalerite, galena and chalcopyrite with other sulfide/sulfate minerals. Sulfur in the main constituent sulfide minerals has been generally derived from mixture of magmatic and seawater sulfur [1,2]. Here, we report an extreme sulfur isotope fractionation in pyrite grains due to the bacterial sulfate reduction from the two modern seafloor hydrothermal deposits of the Iheya-North Knoll and Izena Hole in the middle Okinawa Trough revealed by the SIMS analysis.

We used drilling core samples of the Iheya-North Knoll and Izena Hole obtained through the IODP Exp. 331 and cruise CK16-05 (Exp. 909). Based on the visual core descriptions and microscopic observations, the drill core sample in the subseafloor sulfide layer beneath a sediment of the Izena Hole has a pyrite texture of (1) framboid (including recrystallized one), (2) colloform (including marcasite) and (3) euhedral (including pyrrhotite pseudomorph) along with maturation processes/hydrothermal overprinting. Sulfur isotopes (d34S) of the framboidal, colloform and euhedral pyrites have ranges from -38.91 to -2.84‰ (-17.28 ± 10.21‰; n = 47, average ± 1SD), -13.63 to -2.96‰ (-7.36 ± 2.47‰; n = 29) and -13.43 to -3.80‰ (-6.78 ± 2.69‰; n = 19), respectively. The framboidal pyrite in the pumice layer above the subseafloor sulfide layer exhibits the especially narrow and light d34S from -34.31 to -37.13‰ (n = 6). Moreover, the subseafloor sulfide layer is considered to be formed by the replacement/mineralization of porous pumice layer based on the microscopic observations [3]. Similar sulfur isotope fractionation was also observed at the flank of the mound in the Iheya-North Knoll whose framboidal and euhedral pyrite grains have d34S ranging from -38.03 to -10.35‰ (-28.25 ± 9.84‰; n = 10) and +0.36 to +3.86‰ (+2.85 ± 1.11‰; n = 15), respectively. Combined with the recently reported extreme sulfur isotope fractionation in the Spanish and American volcanogenic massive sulfide (VMS) deposits [4,5], a replacement mineralization process beneath a seafloor using framboidal pyrite grains derived from bacterial sulfate reduction plays a key role to form a large-scale seafloor hydrothermal deposit.

[1] Ohmoto (1996) Ore Geol. Rev., 10, 135-177. [2] Shanks (2001) Rev. Mineral. Geochem., 43, 469-525. [3] Nozaki et al. (2018) AGU Fall Meeting Abstr. [4] Velasco-Acebes et al. (2019) Mineral. Deposita, 54, 913-934. [5] Slack et al. (2019) Chem. Geol., 513, 226-238.