日本地球惑星科学連合2022年大会

講演情報

[E] ポスター発表

セッション記号 A (大気水圏科学) » A-AS 大気科学・気象学・大気環境

[A-AS02] 大気の鉛直運動を基軸とした地球環境学の新展開

2022年5月30日(月) 11:00 〜 13:00 オンラインポスターZoom会場 (6) (Ch.06)

コンビーナ:佐藤 正樹(東京大学大気海洋研究所)、コンビーナ:佐藤 薫(東京大学 大学院理学系研究科 地球惑星科学専攻)、岡本 創(九州大学)、コンビーナ:丹羽 洋介(国立環境研究所)、座長:佐藤 正樹(東京大学大気海洋研究所)、佐藤 薫(東京大学 大学院理学系研究科 地球惑星科学専攻)、岡本 創(九州大学)、丹羽 洋介(国立環境研究所)

11:00 〜 13:00

[AAS02-P03] A simulation study of the Doppler measurements for a Ku-band spaceborne precipitation radar

*金丸 佳矢1中村 健治2高橋 暢宏3花土 弘1久保田 拓志4 (1.情報通信研究機構、2.独協大学、3.名古屋大学 宇宙地球環境研究所、4.宇宙航空研究開発機構)

キーワード:衛星搭載降水レーダー、ドップラー観測、誤差見積もり

A future satellite mission of precipitation observations is discussed in Japan. From a low-orbit satellite, it is difficult to directly observe temporal evolution of precipitating clouds. The dynamical structure of precipitation helps better understandings of the lifecycle of precipitating clouds. Thus, the Doppler capability of a spaceborne precipitation radar is expected to provide data for global dynamical characteristics of various precipitation systems. However, the Doppler measurements of precipitation from space is challenging because of a fast-moving platform and a radar’s finite field of view (FOV). Since the radar onboard the spacecraft quickly passes above precipitating clouds, the decorrelation of precipitation signals due to the beam broadening effect degrades the Doppler measurement accuracy. Moreover, a spatial variability of precipitation within the FOV causes mixing of the motion between precipitating particles and spacecraft, which is called as an effect of the non-uniform beam filling (NUBF).
This study investigates the Doppler capability of the spaceborne precipitation radar based on simulation experiments by using high-spatial resolution ground radars and numerical model data. Here, we assume two Ku-band Doppler radar systems: A) a single large antenna system and B) a dual small antenna system. Since the contamination of the platform motion is proportional to the platform velocity and the radar’s beamwidth, the single large antenna system mitigates the contamination due to the platform motion. On the other hand, the dual antenna system adopts the displaced phase center antenna (DPCA) technique. A signal processing with dual antennas deployed along the platform motion can cancel out the platform motion so that mitigation of the beam broadening and NUBF effects is expected even if the FOV is coarser than the large antenna system. A quantitative evaluation between the two systems is conducted. For the single large antenna system (FOV of 2.5 km), the mean Doppler velocity error of precipitation (> 15 dBZ) is evaluated in the range from 2.3 to 5.0 m/s. Although the large error is originated from a residual error of the imperfect NUBF correction, the error is mitigated from 0.7 to 1.5 m/s when a 5-km average in the along-track direction is applied. For the dual antenna system with the DPCA technique (FOV of 5 km), the error is evaluated in the range from 0.6 to 1.1 m/s. We plan an additional analysis to evaluate error estimates in the air vertical velocity subtracting the precipitation falling velocity from the Doppler velocity.