日本地球惑星科学連合2022年大会

講演情報

[E] 口頭発表

セッション記号 A (大気水圏科学) » A-CG 大気海洋・環境科学複合領域・一般

[A-CG36] 海洋と大気の波動・渦・循環の力学

2022年5月25日(水) 10:45 〜 12:15 展示場特設会場 (2) (幕張メッセ国際展示場)

コンビーナ:青木 邦弘(国立研究開発法人 海洋研究開発機構)、コンビーナ:Keating Shane R(University of New South Wales)、久木 幸治(琉球大学)、コンビーナ:杉本 憲彦(慶應義塾大学 法学部 日吉物理学教室)、Chairperson:Shane R Keating(University of New South Wales)、杉本 憲彦(慶應義塾大学 法学部 日吉物理学教室)

11:15 〜 11:30

[ACG36-09] Breaking of internal waves parametrically excited by ageostrophic anticyclonic instability

*大貫 陽平1、Joubaud Sylvain2、Dauxois Thierry2 (1.九州大学応用力学研究所大気海洋環境研究センター海洋モデリング分野、2.リヨン高等師範学校物理学研究所)

キーワード:回転成層流体、内部重力波、楕円不安定、数値シミュレーション

A gradient-wind balanced flow with an elliptic streamline parametrically excites internal inertia-gravity waves through ageostrophic anticyclonic instability (AAI). This study numerically investigates the breaking of internal waves and the following turbulence generation resulting from the AAI. In our simulation, we periodically distort the calculation domain following the streamlines of an elliptic vortex and integrate the equations of motion using a Fourier spectral method. This technique enables us to exclude the overall structure of the large-scale vortex from the computation and concentrate on resolving the small-scale waves and turbulence.
From a series of experiments, we identify two different scenarios of wave breaking. First, when the instability growth rate is high, the primary wave amplitude excited by AAI quickly goes far beyond the overturning threshold and directly breaks. The final state is thus strongly nonlinear quasi-isotropic turbulence. Second, if the instability growth rate is relatively low, weak wave-wave interactions begin to redistribute energy across frequency space before the primary wave reaches a breaking limit. Then, after a sufficiently long time, the system approaches a Garrett-Munk-like stationary internal wave spectrum, in which wave breaking occurs at finer vertical scales. In both the experimental conditions, we confirm an evident coincidence of the time scales of linear growth and nonlinear decay in the primary wave energy. This finding facilitates quantification of the energetic linkage between a submesoscale eddy field and much smaller-scale turbulence.