日本地球惑星科学連合2023年大会

講演情報

[E] オンラインポスター発表

セッション記号 M (領域外・複数領域) » M-GI 地球科学一般・情報地球科学

[M-GI26] Data assimilation: A fundamental approach in geosciences

2023年5月23日(火) 13:45 〜 15:15 オンラインポスターZoom会場 (8) (オンラインポスター)

コンビーナ:中野 慎也(情報・システム研究機構 統計数理研究所)、藤井 陽介(気象庁気象研究所)、三好 建正(理化学研究所)、加納 将行(東北大学理学研究科)

現地ポスター発表開催日時 (2023/5/22 17:15-18:45)

13:45 〜 15:15

[MGI26-P05] Online state and time-varying parameter estimation

*佐藤 峰斗1、Peter Jan van Leeuwen2中野 慎也3 (1.総合研究大学院大学、2.コロラド州立大学、3.統計数理研究所)

キーワード:データ同化、粒子フィルタ、最適化

A method is proposed for resilient and efficient estimation of the state- and time-varying parameters in nonlinear high-dimensional systems through a sequential data assimilation process. The importance of estimating time-varying parameters lies not only in improving prediction accuracy but also in determining when model characteristics change. We propose a particle-filter-based method that incorporates an optimization algorithm from machine learning into “the particle filter” by exploiting the freedom of the proposal density in particle filtering. However, as the model resolution and number of observations increase, filter degeneracy tends to be the main obstacle to implementing the particle filter. Therefore, this proposed method is combined with the implicit equal-weights particle filter (IEWPF), in which all particle weights are equal. The method is validated using the 1000-dimensional Lorenz-96 model, where the forcing term is parameterized. The proposed approach is shown to be capable of resilient and efficient parameter estimation for parameter changes over time, leading to the conjecture that it is applicable to realistic geophysical, climate, and other problems.