日本地球惑星科学連合2023年大会

講演情報

[J] 口頭発表

セッション記号 M (領域外・複数領域) » M-IS ジョイント

[M-IS08] 南大洋・南極氷床が駆動する全球気候変動

2023年5月26日(金) 10:45 〜 12:00 103 (幕張メッセ国際会議場)

コンビーナ:草原 和弥(海洋研究開発機構)、箕輪 昌紘(北海道大学・低温科学研究所)、野木 義史(国立極地研究所)、関 宰(北海道大学低温科学研究所)、座長:箕輪 昌紘(北海道大学・低温科学研究所)

10:45 〜 11:00

[MIS08-07] 極域気候モデルによってシミュレートされた1991年から現在にかけての南極氷床表面大気・雪氷物理状態

★招待講演

*庭野 匡思1橋本 明弘1津滝 俊2,3 (1.気象研究所、2.国立極地研究所、3.総合研究大学院大学 複合科学研究科 極域科学専攻)

キーワード:南極氷床、気候、大気、雪氷、極域気候モデル

The mass loss from the Antarctic ice sheet is accelerating in recent years, and its pace is expected to increase in the future warmer climate. Because the mass loss from the Antarctic ice sheet can enhance global sea level rise substantially, it is crucial to understand the detailed response of the ice sheet surface to the changes in surface atmospheric conditions driven mainly by the Southern Ocean. Therefore, in this present study, we apply a polar regional climate model called NHM-SMAP, which was originally developed for the Greenland ice sheet (Niwano et al., 2018, 2019, 2021; Fettweis et al., 2020), in Antarctica and analyze its simulation results from 1991 to the present. According to our evaluation of the model in terms of the ice sheet surface mass balance during the study period, mean error and root mean square error are –12.2 mm year–1 and 139.8 mm year–1, respectively, which are better than those obtained in the Greenland ice sheet (Niwano et al., 2018; Fettweis et al., 2020). Therefore, in this contribution, we focus mainly on surface atmospheric and snow/ice physical conditions relevant to the ice sheet surface mass balance, and present comprehensive model performance/characteristics.

References:
Fettweis, X., Hofer, S., Krebs-Kanzow, U., Amory, C., Aoki, T., Berends, C. J., Born, A., Box, J. E., Delhasse, A., Fujita, K., Gierz, P., Goelzer, H., Hanna, E., Hashimoto, A., Huybrechts, P., Kapsch, M.-L., King, M. D., Kittel, C., Lang, C., Langen, P. L., Lenaerts, J. T. M., Liston, G. E., Lohmann, G., Mernild, S. H., Mikolajewicz, U., Modali, K., Mottram, R. H., Niwano, M., Noël, B., Ryan, J. C., Smith, A., Streffing, J., Tedesco, M., van de Berg, W. J., van den Broeke, M., van de Wal, R. S. W., van Kampenhout, L., Wilton, D., Wouters, B., Ziemen, F., and Zolles, T. (2020): GrSMBMIP: intercomparison of the modelled 1980–2012 surface mass balance over the Greenland Ice Sheet. The Cryosphere, 14, 3935–3958, https://doi.org/10.5194/tc-14-3935-2020.

Niwano, M., Aoki, T., Hashimoto, A., Matoba, S., Yamaguchi, S., Tanikawa, T., Fujita, K., Tsushima, A., Iizuka, Y., Shimada, R., and Hori, M. (2018): NHM–SMAP: spatially and temporally high-resolution nonhydrostatic atmospheric model coupled with detailed snow process model for Greenland Ice Sheet. The Cryosphere, 12, 635-655. https://doi.org/10.5194/tc-12-635-2018.

Niwano, M., Hashimoto, A., and Aoki, T. (2019): Cloud-driven modulations of Greenland ice sheet surface melt. Sci. Rep., 9, 10380, https://doi.org/10.1038/s41598-019-46152-5.

Niwano, M., Box, J. E., Wehrlé, A., Vandecrux, B., Colgan, W. T., and Cappelen, J. (2021): Rainfall on the Greenland ice sheet: present-day climatology from a high-resolution non-hydrostatic polar regional climate model. Geophys. Res. Lett., 48, e2021GL092942. https://doi.org/10.1029/2021GL092942.