日本地球惑星科学連合2023年大会

講演情報

[J] オンラインポスター発表

セッション記号 P (宇宙惑星科学) » P-CG 宇宙惑星科学複合領域・一般

[P-CG20] 宇宙における物質の形成と進化

2023年5月26日(金) 10:45 〜 12:15 オンラインポスターZoom会場 (3) (オンラインポスター)

コンビーナ:荒川 創太(海洋研究開発機構)、大坪 貴文(自然科学研究機構 国立天文台)、野村 英子(国立天文台 科学研究部)、瀧川 晶(東京大学 大学院理学系研究科 地球惑星科学専攻)


現地ポスター発表開催日時 (2023/5/25 17:15-18:45)

10:45 〜 12:15

[PCG20-P04] MONTE CARLO SIMULATION OF PHOTOCHEMICAL SYNTHESIS OF AMINO ACIDS IN A PROTOPLANETARY DISK

*落合 葉子1井田 茂1庄司 大悟2 (1.東京工業大学、2.JAXA宇宙科学研究所 )

キーワード:宇宙化学、原始惑星系円盤、有機物合成、光化学、アミノ酸

The discoveries of complex organic molecules (COMs) in the interstellar medium suggest the universality of organic synthesis in space and possibly provide clues to the origin of life. Laboratory experiments have shown that even amino acids, the building blocks of life, can be synthesized in ice exposed to UV radiation which mimics interstellar ice. Photochemical synthesis is therefore considered to be one of the formation mechanisms of COMs. However, there are still significant uncertainties in photochemistry and ice chemistry because of technical problems inherent in analysis and observation, for example. Here, we investigate amino acid synthesis in protoplanetary disks using new Monte Carlo simulation that applies the classical graph-theoretic matrix model for chemical reaction. This method was originally proposed by Takehara et al. to study sugar synthesis driven by UV irradiation. We have improved it to allow more practical consideration of radicals that play an important role in photochemistry. Molecules in our simulation form only covalent bonds or radicals, and one step of chemical reaction is restricted to the recombination of two different bonds. These constraints allow us to automatically generate chemical reaction pathways without preparing a reaction network. Consequently, we can access the global picture of not only amino acid synthesis, but also the formation of any compounds. The result showed rapid increase of amino acids after UV irradiation stopped. We found that these amino acids are produced by radical reactions rather than the Strecker-type reaction. More detailed formation mechanisms and its dependence on the initial composition of the molecules are discussed. The discoveries of complex organic molecules (COMs) in the interstellar medium suggest the universality of organic synthesis in space and possibly clues to the origin of life. Laboratory experiments have shown that even amino acids, the building blocks of life, can be synthesized in ice exposed to UV radiation which mimics interstellar ice. Photochemical synthesis is therefore considered to be one of the formation mechanisms of COMs. However, there are still significant uncertainties in photochemistry and ice chemistry because of technical problems inherent in analysis and observation, for example. Here, we investigate amino acid synthesis in protoplanetary disks using new Monte Carlo simulation that applies the classical graph-theoretic matrix model for chemical reaction. This method was originally proposed by Takehara et al. to study sugar synthesis driven by UV irradiation. We have improved it to allow more practical consideration of radicals that play an important role in photochemistry. Molecules in our simulation form only covalent bonds or radicals, and one step of chemical reaction is restricted to the recombination of two different bonds. These constraints allow us to automatically generate chemical reaction pathways without preparing a reaction network. Consequently, we can access the global picture of not only amino acid synthesis, but also the formation of any compounds. The result showed rapid increase of amino acids after UV irradiation stopped. We found that these amino acids are produced by radical reactions rather than the Strecker-type reaction. More detailed formation mechanisms and its dependence on the initial composition of the molecules are discussed.