日本地球惑星科学連合2023年大会

講演情報

[E] 口頭発表

セッション記号 P (宇宙惑星科学) » P-EM 太陽地球系科学・宇宙電磁気学・宇宙環境

[P-EM11] 系外惑星

2023年5月24日(水) 13:45 〜 15:15 102 (幕張メッセ国際会議場)

コンビーナ:小玉 貴則(東京大学)、野津 翔太(理化学研究所 開拓研究本部 坂井星・惑星形成研究室)、川島 由依(理化学研究所)、森 万由子(東京大学)、座長:中山 陽史(立教大学理学研究科物理学専攻)、小玉 貴則(東京大学)

14:30 〜 14:45

[PEM11-14] Effects of stellar spectra on atmospheric escape from a Mars-like planet orbiting inactive low-mass stars

*堺 正太朗1,2中山 陽史3関 華奈子4寺田 直樹1品川 裕之5坂田 遼弥4,1Leblanc François6Brain David7田中 高史5,8 (1.東北大学大学院理学研究科地球物理学専攻、2.東北大学大学院理学研究科惑星プラズマ・大気研究センター、3.立教大学理学研究科物理学専攻、4.東京大学大学院理学系研究科地球惑星科学専攻、5.情報通信研究機構、6.LATMOS/CNRS, Sorbonne Université、7.Laboratory for Atmospheric and Space Physics, University of Colorado Boulder、8.九州大学国際宇宙惑星環境研究センター)

キーワード:系外惑星、火星、大気散逸、惑星ー太陽風相互作用

Atmospheric evolution is one of the key parameters to understand how Earth and other planets were able to maintain thick atmosphere and habitability. In particular, atmospheric escape is strongly linked to atmospheric evolution. It is dependent on the planetary size, the existence of an intrinsic magnetic field, its intensity, on the stellar activity and stellar wind conditions. The variation in stellar activity affects both thermal escape and nonthermal escape. Ancient Mars, when the solar activity was more active than at present, had a very high atmospheric escape rate, the magnitude of the X-ray and extreme ultraviolet (XUV) irradiance being one of the parameters to determine the ion escape rate.
Many exoplanets have been discovered in recent years, and among them, M and K dwarfs are of particular interest because they might have habitable environments. The habitable zones of these stars are located very close to the main stars within 0.1 AU. Exoplanets in the habitable zones of these stars must therefore be exposed to intense XUV radiation and stellar winds. Numerical simulations suggested that ion escape rate from Proxima Centauri b, orbiting at 0.049 AU, is three orders of magnitude greater than at the present Mars, with a value of ~1027 s-1 (Dong et al., 2017). The previous study assumed an XUV intensity several tens of times that of the Sun to determine ion escape rate, but in fact the shape of the XUV spectrum determines the thermospheric profile, controlling in the ion escape rate.
This study presents the influences of stellar XUV spectrum on ion escape using a terrestrial exoplanetary thermosphere model and a multispecies magnetohydrodynamic model (REPPU-Planets). The target stellar systems are Sun, HD85512, and GJ581. Note that these stars are somewhat inactive XUV environments compared to Proxima Centauri. The planets are of Mars type and located at 1.524, 0.622, and 0.174 AU, respectively, in order to keep the same irradiance as that of the Martian orbit in the present solar system. According to thermosphere model, the thermosphere of the HD85512 system is the most extended, followed by the GJ581 system. The ion escape rates are estimated by REPPU-Planets simulations using these thermospheric profiles as input. Ion escape is the most intense for the HD85512 system, followed by Sun/Mars despite the weakest XUV radiation. In this presentation, the escape mechanism is discussed by comparing the XUV intensity at different wavelengths.