日本地球惑星科学連合2023年大会

講演情報

[E] オンラインポスター発表

セッション記号 P (宇宙惑星科学) » P-EM 太陽地球系科学・宇宙電磁気学・宇宙環境

[P-EM12] Coupling Processes in the Atmosphere-Ionosphere System

2023年5月22日(月) 10:45 〜 12:15 オンラインポスターZoom会場 (2) (オンラインポスター)

コンビーナ:Liu Huixin(九州大学理学研究院地球惑星科学専攻 九州大学宙空環境研究センター)、大塚 雄一(名古屋大学宇宙地球環境研究所)、Chang Loren(Institute of Space Science, National Central University)、Yue Deng(University of Texas at Arlington)


現地ポスター発表開催日時 (2023/5/21 17:15-18:45)

10:45 〜 12:15

[PEM12-P10] Study of Model Uncertainty due to Input and Internal Parameters of GAIA

*陣 英克1三好 勉信2垰 千尋1品川 裕之1藤原 均3 (1.情報通信研究機構、2.九州大学、3.成蹊大学)

キーワード:電離圏、熱圏、宇宙天気、データ同化、シミュレーション

Prediction of the earth's upper atmosphere is one of the important issues in the space weather research. Variations of ionospheric electron density and thermospheric mass density have significant impacts on the use of GNSS applications, the stable operation of satellites in low earth orbits, and so on. For the purpose of upper atmospheric prediction, we are developing a data assimilative model using a whole atmosphere-ionosphere model called GAIA, with an ensemble Kalman filter method. The assimilation method is to find the most probable solution from observation errors and model uncertainties. Therefore, it is important to reproduce the model uncertainty well in the ensemble in order to improve the performance of the assimilation calculation. It is also useful to understand how much model error exists and what causes it when interpreting model results.

In this study, we selected several input and internal parameters used in GAIA that could be uncertain, and examined the degree to which these uncertainties contribute to the extent of spatial distributions and temporal changes in the ionosphere and thermosphere. From this result, we discuss the optimal uncertain parameters to introduce into the data assimilation scheme.