日本地球惑星科学連合2023年大会

講演情報

[J] オンラインポスター発表

セッション記号 S (固体地球科学) » S-CG 固体地球科学複合領域・一般

[S-CG56] 変動帯ダイナミクス

2023年5月25日(木) 15:30 〜 17:00 オンラインポスターZoom会場 (6) (オンラインポスター)

コンビーナ:深畑 幸俊(京都大学防災研究所)、岩森 光(東京大学・地震研究所)、大橋 聖和(山口大学大学院創成科学研究科)

現地ポスター発表開催日時 (2023/5/26 17:15-18:45)

15:30 〜 17:00

[SCG56-P05] 剪断歪エネルギーに基づく2016年熊本地震震源域の背景応力場の推定

*寺川 寿子1浅野 公之2浦田 優美3 (1.名古屋大学大学院環境学研究科,附属地震火山研究センター、2.京都大学防災研究所、3.産業総合技術研究所)

キーワード:応力、剪断歪エネルギー、2016年熊本地震

We aim to estimate the background stress level prior to the 2016 Kumamoto earthquake sequence, examining temporal changes in elastic strain energy from various aspects. Shear stress is equal to the frictional strength of the fault at the time of an earthquake. With the method of Terakawa & Hauksson (2018) we estimated the six components of the background stress fields by examining the fault orientations relative to the stress pattern, and by assuming the Coulomb failure criterion characterized by three representative apparent friction coefficients (m’ = 0.4, 0.2, and 0.1). We also estimated coseismic stress change fields due to the largest preshock (14 April) and the mainshock (16 April), using the slip distributions of the events and slip response function (Asano & Iwata, 2016; Fukahata & Matsu’ura, 2005). Then, we obtained three (absolute) stress fields immediately after the mainshock, superposing the coseismic stress changes fields on the background stress fields. Using all the six components of stress fields immediately before and after the earthquake sequence, we evaluated temporal changes in elastic strain energies (shear and volumetric strain energies).

We examined relationship between the total changes in shear strain energies and the final slip on the mainshock faults. In the case of m’ = 0.4, the larger slip contributed to release shear strain energies more. We found similar tendency in the case of m’ = 0.2 except for the shallow part with large slip on the Hinagu fault. In the case of m’ = 0.1, on the other hand, large slip in most shallow parts, which includes large slip area at Futagawa fault, contributed to increase shear strain energies. The results with m’ = 0.1 are inconsistent with that earthquakes are physical process to release shear strain energies. This perspective is supported by further analysis on the relation between temporal changes in slip and shear strain energies and on temporal changes in stress orientation. Considering these results, we conclude that the background stress fields with m’ = 0.4 can be the most rational, and that the source region of the Kumamoto earthquake sequence is in the Anderson-Byerlee stress condition.