日本地球惑星科学連合2023年大会

講演情報

[J] 口頭発表

セッション記号 S (固体地球科学) » S-GD 測地学

[S-GD02] 地殻変動

2023年5月23日(火) 09:00 〜 10:15 304 (幕張メッセ国際会議場)

コンビーナ:加納 将行(東北大学理学研究科)、落 唯史(国立研究開発法人産業技術総合研究所 地質調査総合センター 活断層・火山研究部門)、富田 史章(東北大学災害科学国際研究所)、座長:大園 真子(北海道大学大学院理学研究院附属地震火山研究観測センター)、山崎 雅(産業技術総合研究所)

09:30 〜 09:45

[SGD02-03] 地球物理学的に推定された低粘性領域が支配する姶良カルデラの粘弾性地殻変動

*山崎 雅1、SIGMUNDSSON, Freysteinn2、為栗 健3、井口 正人3 (1.産業技術総合研究所、2.アイスランド大学ノルディック火山センター、3.京都大学防災研究所)

Volcano deformation may be controlled by more complex rheological structure of the crust than a simple rheological assumption having often been made in conventional models. Indeed, geodetic data in and around Aira caldera, southern Kyushu, Japan require a previous uni-viscous (UNV) model to have lower and higher effective viscosities, respectively, earliest and later in post-eruption crustal deformation after the 1914 eruption of Sakurajima volcano. This motivates us to implement a spatial viscosity variation inferred from recent seismic imaging beneath the caldera. In this study, using a 3-D linear Maxwell viscoelastic model, where an elastic layer underlain by a viscosity layer, we examine the influence of a low viscosity zone (LVZ) in the lower layer on ground surface displacement rate in viscoelastic responses to two different deformation source modes: (M1) an instantaneous source deflation at a major eruption and (M2) a subsequent continuous source inflation due to magma recharge. The LVZ model behaviour is quantified by the comparison with a UNV model with an apparent uniform viscosity (ηa) that best mimics the LVZ model displacement. It is found that for a given LVZ structure, ηa in viscoelastic response to the M1 mode is smaller than that to the M2 mode, i.e., the rate-controlling viscosities are the ones in the inner and outer part of LVZ for the M1 and M2 modes, respectively. Such LVZ model behaviour is applicable for the geodetic data in and around Aira caldera, where ground surface displacement is predominantly controlled by the viscoelastic responses to the 1914 eruption and subsequent magma recharge earliest and later in the post-eruption period, respectively. We compare model predictions and the geodetic data, and confirm that a LVZ model explains well the data at any stage after the 1914 eruption. This study emphasises interdisciplinary investigations that integrate geodetic and other geophysical datasets for better understanding of volcanic unrest.