日本地球惑星科学連合2024年大会

セッション情報

[E] 口頭発表

セッション記号 A (大気水圏科学) » A-CG 大気海洋・環境科学複合領域・一般

[A-CG31] Climate Variability and Predictability on Subseasonal to Centennial Timescales

2024年5月27日(月) 09:00 〜 10:15 201B (幕張メッセ国際会議場)

コンビーナ:Murakami Hiroyuki(Geophysical Fluid Dynamics Laboratory/University Corporation for Atmospheric Research)、森岡 優志(海洋研究開発機構)、Kataoka TakahitoYang Xiaosong(NOAA Geophysical Fluid Dynamics Laboratory)、Chairperson:Hiroyuki Murakami(NOAA/GFDL)、Xiaosong Yang(NOAA Geophysical Fluid Dynamics Laboratory)

Climate variability on subseasonal to centennial timescales (e.g., Madden-Julian Oscillation, El Nino/Southern Oscillation (ENSO), Indian Ocean Dipole, Pacific Decadal Variability, Atlantic Multidecadal Variability, Southern Ocean Centennial Variability) has significant impacts on global socioeconomic activities by inducing extreme climate events (e.g., atmospheric and marine heatwaves/coldwaves, hurricanes/typhoons/cyclones, and floods/droughts) and influencing their physical characteristics. Numerous efforts have been made to comprehensively understand and skillfully predict subseasonal to centennial climate variabilities using observation data and dynamical/statistical models. However, most models still undergo systematic biases in the amplitude, spatial patterns, and frequency of these climate variabilities. These model biases often stem from an inadequate grasp of weather and climate interactions across different spatiotemporal scales (e.g., tropical cyclones-ENSO) and incomplete representation of the complex and nonlinear processes within the climate system (e.g., troposphere-stratosphere coupling, atmosphere-ocean-sea ice interactions). Therefore, a seamless approach to climate modeling and observational studies across different spatiotemporal scales is essential. This session welcomes all research activities related to subseasonal to centennial climate variabilities and/or predictability utilizing observational data (e.g., satellite, ship, buoy/float, proxy data), theoretical/modeling approaches, and artificial intelligence/machine learning frameworks. Research topics involving the analysis of the Coupled Model Intercomparison Project Phase 6 (CMIP6) are also welcome.

10:00 〜 10:15

*Sergey Bulat1,2,3、Alexey Ekaykin4、Vladimir Lipenkov4、Jean M.F. Martins3、Patrick Ginot3、Jean-Robert Petit3 (1.Petersburg Nuclear Physics Institute named by B. P. Konstantinov of National Research Centre Kurchatov Institute,188300 Gatchina, Russia 、2.Institute of Physics and Technology, Ural Federal University, 620002 Ekaterinburg, Russia 、3.University Grenoble Alpes, CNRS, IRD, INP-G, IGE (UMR 5001), 38000 Grenoble, France 、4.AARI, 199397 Saint-Petersburg, Russia )

×

認証

予稿は5月12日公開予定です。パスワード認証はできません。公開日までお待ちください。

×

要旨・抄録、PDFの閲覧には参加者用アカウントでのログインが必要です。参加者ログイン後に閲覧・ダウンロードできます。
» 参加者用ログイン
» 出展者の方はこちら