日本地球惑星科学連合2024年大会

講演情報

[E] ポスター発表

セッション記号 A (大気水圏科学) » A-AS 大気科学・気象学・大気環境

[A-AS01] 大気の鉛直運動を基軸とした地球環境学の新展開

2024年5月28日(火) 17:15 〜 18:45 ポスター会場 (幕張メッセ国際展示場 6ホール)

コンビーナ:佐藤 正樹(東京大学大気海洋研究所)、佐藤 薫(東京大学 大学院理学系研究科 地球惑星科学専攻)、岡本 創(九州大学)、伊藤 純至(東北大学)

17:15 〜 18:45

[AAS01-P01] 2022年6月に仙台平野で発生した 降雹事例におけるレーダー観測および数値モデルによる鉛直風の解析

*伊藤 純至1、岡西 望1林 修吾3山田 芳則2 (1.東北大学、2.叡啓大学、3.気象研究所)

キーワード:鉛直流、ドップラー解析、数値気象モデル、降雹

We conducted an analysis of a hailstorm that occurred on June 2, 2022, in the vicinity of Sendai, Japan. Our study estimated the three-dimensional wind speed over the Sendai Plain and used it to evaluate the numerical outcomes of the Japan Meteorological Agency’s non-hydrostatic model (JMA-NHM) at various horizontal resolutions.

In our radar analysis, we utilized XRAIN, a dual-polarization meteorological radar data provided by the Ministry of Land, Infrastructure, Transport, and Tourism. The computations were executed at a horizontal resolution of 500 m and a vertical resolution of 300 m. We employed three radars located in Miyagi and Fukushima prefectures and performed calculations using the MUSCAT method (Yamada 2021). A quality control process was also performed for Doppler velocity data.

For numerical simulations using JMA-NHM, we performed them at three different horizontal resolutions: 2km, 1km, and 500m to investigate how simulated convection changes with different resolutions.
Both the radar analysis and all model calculations at different horizontal resolutions were successful in representing strong precipitation, exceeding a reflectivity of 40 dBZ over the Sendai Plain. In our statistical analysis, we observed significant differences depending on the horizontal resolution, especially in developed updrafts. All results depicted the development and decay of convective clouds within the analysis period.

The model results reproduce stronger vertical flows as horizontal resolution increased; particularly at a resolution of 500m where it could represent vertical flows exceeding 10 m/s. All horizontal resolutions could represent updraft development but most accurately at a resolution of 500m which also best represented statistical properties related to characteristics or variations in convective clouds. Thus, the present study suggests that a numerical weather prediction model with finer resolution can more faithfully represent convective clouds.