日本地球惑星科学連合2024年大会

講演情報

[J] 口頭発表

セッション記号 A (大気水圏科学) » A-AS 大気科学・気象学・大気環境

[A-AS09] 大気化学

2024年5月27日(月) 13:45 〜 15:15 104 (幕張メッセ国際会議場)

コンビーナ:入江 仁士(千葉大学環境リモートセンシング研究センター)、中山 智喜(長崎大学 大学院水産・環境科学総合研究科)、石戸谷 重之(産業技術総合研究所)、江波 進一(国立大学法人筑波大学)、座長:原 圭一郎(福岡大学理学部地球圏科学科)

14:45 〜 15:00

[AAS09-17] Enhancing Global Air Quality Monitoring through Remote Sensing and Machine Learning

*TANIA SEPTI ANGGRAINI1,2HITOSHI IRIE1、ANJAR DIMARA SAKTI3,4、KETUT WIKANTIKA3,4 (1.Center for Environmental Remote Sensing, Chiba University, 1-33 Yayoicho, Inage-Ku, Chiba 263-8522, Japan、2.Doctoral Program in Geodesy and Geomatics Engineering, Faculty of Earth Science and Technology, Institut Teknologi Bandung, Bandung, 40132, Indonesia 、3.Center for Remote Sensing, Institut Teknologi Bandung, Bandung, 40132, Indonesia 、4.Remote Sensing and Geographic Information Sciences Research Group, Faculty of Earth Sciences and Technology, Institut Teknologi Bandung, Bandung, 40132, Indonesia)

キーワード:Air Quality Index, Remote Sensing, Machine Learning Linear Regression, Monitoring Stations

The global distribution of air pollution monitoring stations is notably sparse, primarily due to the high costs associated with establishing and maintaining ground-based stations. This limitation has led to the concentration of these stations in urban areas, often identified as air pollution hotspots, leaving vast regions without adequate monitoring. This study proposes the utilization of Remote Sensing observations as a Low-Cost Monitoring and spatially comprehensive solution to this challenge. The research aims to predict the Air Quality Index (AQI) by integrating ground station measurements with Remote Sensing data through the application of Machine Learning Linear Regression (MLLR). MLLR is chosen for its efficiency in data processing and effective learning capabilities, will incorporate satellite-derived air pollution metrics, socio-economic factors, and environmental variables. The methodology is segmented into four scenarios: Single Linear Regression (SLR), Multiple Linear Regression (MLR), Single Random Forest Regression (SRFR), and Multiple Random Forest Regression (MRFR). Preliminary results indicate that the Multiple methods, particularly MLR and MRFR, show promising accuracy and reliability in predicting AQI. The implications of this study are significant, particularly for regions lacking ground-based air pollution monitoring stations. By leveraging Remote Sensing and advanced machine learning techniques, areas previously unmonitored can gain insights into their air quality status, facilitating informed decision-making and effective air pollution mitigation planning.