日本地球惑星科学連合2024年大会

講演情報

[J] 口頭発表

セッション記号 A (大気水圏科学) » A-CG 大気海洋・環境科学複合領域・一般

[A-CG40] 海洋と大気の波動・渦・循環の力学

2024年5月29日(水) 15:30 〜 16:45 106 (幕張メッセ国際会議場)

コンビーナ:大貫 陽平(九州大学 応用力学研究所)、久木 幸治(琉球大学)、杉本 憲彦(慶應義塾大学 法学部 日吉物理学教室)、松田 拓朗(北海道大学地球環境科学研究院)、座長:大貫 陽平(九州大学 応用力学研究所)、久木 幸治(琉球大学)、杉本 憲彦(慶應義塾大学 法学部 日吉物理学教室)、松田 拓朗(北海道大学地球環境科学研究院)

15:45 〜 16:00

[ACG40-07] Resonant triad interactions among internal waves in stratified shear flow

★Invited Papers

*Anubhab Roy1、Ramana Patibandla1、Manikandan Mathur2 (1.Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai, India、2.Department of Aerospace Engineering, Indian Institute of Technology Madras, Chennai, India)

キーワード:Internal waves, Resonant Triad Interaction, Weakly Nonlinear Analysis, Stratified Shear Flow

Triadic resonance interactions among discrete internal wave modes in a 2D, inviscid, finite-depth, stratified shear flow is studied. Motivated by the internal tides generated due to barotropic forcing over a topography, we consider the primary wave field to be a sum of countably infinite internal wave modes at a single frequency. The weakly nonlinear solution of this primary wave will comprise of a superharmonic term (twice the primary wave frequency) and a mean flow term (zero frequency). For a given interaction and for exponential background shear flow, we show the resonance locations in the parameter space of nondimensional frequency and Richardson number by tracking locii of the locations where the superharmonic term diverges. Assuming uniform stratification and in the absence of any shear flow, three conditions have to be satisfied for resonance: two wavenumber and a frequency condition. Using asymptotic theory, we show that even with a weak shear, the resonance condition on the vertical wavenumber need not be satisfied. Therefore, all those locations that satisfy horizontal wavenumber and frequency conditions but are non-resonant due to the absence of shear will become resonant with the presence of an arbitrarily weak shear. This will also result in self-interaction and resonances close to zero frequency. Our asymptotic theory can be extended to other inhomogeneities, such as non-uniform stratification, as well.