日本地球惑星科学連合2024年大会

講演情報

[J] ポスター発表

セッション記号 A (大気水圏科学) » A-CG 大気海洋・環境科学複合領域・一般

[A-CG46] エミュレータの開発と応用

2024年5月29日(水) 17:15 〜 18:45 ポスター会場 (幕張メッセ国際展示場 6ホール)

コンビーナ:筒井 純一(電力中央研究所)、杉山 昌広(東京大学未来ビジョン研究センター)、高橋 潔(国立研究開発法人国立環境研究所)

17:15 〜 18:45

[ACG46-P04] Exploring the applicability of deep learning regional climate model emulator for Compound Event adaptation during the west Africa summer monsoon passage: Initial approach

*Precious Eromosele Ebiendele1Koji Dairaku1 (1.University of Tsukuba)

キーワード:Deep Learning, Downscaling, RCM-EMULATOR, Compound Event

Providing high resolution climate information is needed for climate adaptation strategies over West Africa. A novel approach which combines both dynamical and statistical downscaling can offer significant added value in quantifying the current increasing Compound drought and heatwave events severity during the west africa monsoon season. In our study, we established a preliminary benchmark for using a deep learning RCM-emulator which is trained using large-scale monsoon flow sensitivity inputs to simulate West African summer monsoon precipitation. Our findings show that our unique deep learning RCM-emulator can learn the optimal GCM to RCM downscaling function. Furthermore, the RCM-emulator offers a significant computational advantage over an RCM simulation. Conclusively, in terms of computing efficiency and gain, we believe that deep learning RCM-emulators can be can be applied to produce high resolution regional scale climate projections of several compound event drivers.