日本地球惑星科学連合2024年大会

講演情報

[J] 口頭発表

セッション記号 B (地球生命科学) » B-CG 地球生命科学複合領域・一般

[B-CG06] 地球史解読:冥王代から現代まで

2024年5月29日(水) 09:00 〜 10:30 コンベンションホール (CH-A) (幕張メッセ国際会議場)

コンビーナ:小宮 剛(東京大学大学院総合文化研究科広域科学専攻)、加藤 泰浩(東京大学)、鈴木 勝彦(国立研究開発法人海洋研究開発機構・海底資源センター)、中村 謙太郎(東京大学大学院工学系研究科システム創成学専攻)、座長:渡辺 泰士(気象研究所/東京大学)、小宮 剛(東京大学大学院総合文化研究科広域科学専攻)


09:30 〜 09:45

[BCG06-03] High-precision stable isotope measurements of W and Mo in single sample aliquots using mixed double spikes

*柏原 輝彦1深海 雄介2、渡壁 亜矢子1栗栖 美菜子1、渡慶次 聡3飯塚 毅4鈴木 勝彦1 (1.国立研究開発法人海洋研究開発機構、2.学習院大学、3.マリンワークジャパン、4.東京大学)

キーワード:タングステン、モリブデン、安定同位体、ダブルスパイク法

Mass-dependent fractionation of W isotopes has been an emerging tool in recent years that can potentially constrain a wide range of geochemical processes in the crust/mantle systems and low temperature environments. In particular, this isotope system is expected to improve our understanding of the Earth system in combination with the Mo isotopes, which has successfully been established in the past two decades as a proxy, particularly for the oxygenation of Earth’s ocean and atmosphere, but also still been expanding its applications to the solid earth and other areas including ore deposit, oil, and anthropogenic tracing. Here, we establish a combined double-spike (DS) methods for W (180W-184W spike) and Mo (97Mo-100Mo spike) to perform simple, efficient, and robust isotope measurements of these two chemically analogous elements in single sample aliquots, which could be a robust basis for the development of the stable isotope geochemistry of W and Mo.
Based on the previous column chemistry, we optimized two-stage anion-exchange procedures to remove matrix elements, particularly the critical interferences of Ta and Hf on 180W, and to collect sharply separated W and Mo fractions. The obtained recoveries are quantitative for both elements, and their purities are sufficiently high to achieve high-precision measurements comparable to previous DS measurements of individual elements. The reproducibility of our isotope measurements for in-house standard solutions (2SD) were ±0.02‰ for δ186W and ±0.03‰ for δ98Mo. We applied our method to 27 geochemical reference materials including 10 igneous rocks (AGV-2, JA-3, JR-1, JB-1, JB-1a, JB-2, JB-3, W-2a, TDB-1, WGB-1), 9 sediments (Nod-A-1, Nod-P-1, JMn-1; JMS-1, JMS-2, CRM7302-a, HISS-1, MESS-4, PAC-3), and 8 sedimentary and metasedimentary rocks (SDC-1, SDO-1, SBC-1, SCO-1, SCO-2; JSL-1, JSL-2, IOC-1) to produce a comprehensive data set. The data set confirmed the accuracy of our measurements and expands the reference materials available for interlaboratory comparisons of δ186W and δ98Mo. The data set also indicates potential pitfalls in sample preparations for particular sample types, and shows several variations of W and Mo isotopes possibly related to low-/high-temperature geochemical processes. In the presentation, we will also discuss potential applications of the combined W and Mo isotope analyses and further development of our isotope method to establish an oxybarometer of the water mass in the past.