日本地球惑星科学連合2024年大会

講演情報

[E] 口頭発表

セッション記号 P (宇宙惑星科学) » P-CG 宇宙惑星科学複合領域・一般

[P-CG19] 系外惑星

2024年5月28日(火) 10:45 〜 12:00 102 (幕張メッセ国際会議場)

コンビーナ:小玉 貴則(地球生命研究所、東京工業大学)、野津 翔太(東京大学 大学院理学系研究科 地球惑星科学専攻 地球惑星システム科学講座)、川島 由依(東北大学)、森 万由子(東京大学)、座長:川島 由依(宇宙航空研究開発機構)、川内 紀代恵(立命館大学)


11:30 〜 11:45

[PCG19-10] Unveiling Atmospheric Features of HR 7672B Observed by REACH/Subaru

*笠木 結1川島 由依2河原 創2、増田 賢人3、小谷 隆行4,1,5 (1.総合研究大学院大学、2.宇宙航空研究開発機構宇宙科学研究所、3.大阪大学、4.アストロバイオロジーセンター、5.国立天文台)

Characterizing the atmospheres of exoplanets and brown dwarfs is crucial for understanding their atmospheric physics and chemistry, searching for biosignatures, and investigating their formation histories. The observational method to combine adaptive optics with a high-resolution spectrograph has been developed recently, enabling high-resolution spectroscopy for directly imaged faint companions. This approach contrasts with lower-resolution spectroscopy, where atmospheric parameter degeneracy was a problem; high-resolution spectra enable precise identification of individual absorption lines, allowing for a detailed, non-degenerate examination of atmospheric characteristics.
In this research, we performed an atmospheric retrieval on the L-type brown dwarf HR 7672B, using the REACH (Y, J, H band, R∼100,000), which combines the SCExAO extreme adaptive optics instrument with the IRD infrared high-dispersion spectrograph at the Subaru Telescope. Our atmospheric models, calculated using the ExoJAX code (Kawahara et al. 2022), were enhanced by incorporating models for cloud presence in the brown dwarf atmosphere and accounting for contamination from host star light and Earth’s atmospheric absorption lines. The observed J and H band spectra were successfully fitted by the model including molecular species of H2O and FeH. We found that models both with and without cloud opacity could explain the observed spectra, attributed to varying continuum opacity sources (cloud or CIA opacity) under different temperature-pressure profiles. The model including cloud opacity suggests potential cloud formation from TiO2 or Al2O3. The retrieved H2O abundance is almost consistent with chemical equilibrium predictions, whereas the higher values of FeH might indicate a quenching process due to the atmospheric mixing.
Our presentation will outline the retrieval methodology, share our findings, and introduce future prospects.