日本地球惑星科学連合2024年大会

講演情報

[E] 口頭発表

セッション記号 P (宇宙惑星科学) » P-CG 宇宙惑星科学複合領域・一般

[P-CG20] 宇宙・惑星探査の将来計画および関連する機器開発の展望

2024年5月27日(月) 13:45 〜 15:00 103 (幕張メッセ国際会議場)

コンビーナ:桑原 正輝(立教大学)、横田 勝一郎(大阪大学・理学研究科)、坂谷 尚哉(JAXA 宇宙科学研究所)、三谷 烈史(宇宙航空研究開発機構宇宙科学研究所)、座長:三谷 烈史(宇宙航空研究開発機構宇宙科学研究所)

14:30 〜 14:45

[PCG20-14] Development of ultra-lightweight X-ray telescopes fabricated with MEMS technologies for GEO-X

*沼澤 正樹1、江副 祐一郎1、石川 久美1伊師 大貴2森下 弘海1、辻 雪音1、関口 るな1、村川 貴俊1、山田 裕大1、森本 大輝1、石川 怜1、石牟礼 碧衣1、宮内 俊英1、小笠原 勇翔1、中嶋 大3、佐藤 佑樹3、三石 郁之4、金森 義明5、森下 浩平6、満田 和久7 (1.東京都立大学、2.宇宙航空研究開発機構、3.関東学院大学、4.名古屋大学、5.東北大学、6.九州大学、7.国立天文台)

キーワード:X線微細穴光学系、小型衛星、太陽風電荷交換、地球磁気圏

We have been developing ultra-lightweight Wolter type-I X-ray telescopes fabricated with MEMS technologies for GEO-X (GEOspace X-ray imager) which is a small satellite mission to perform soft X-ray imaging spectroscopy of the entire Earth's magnetosphere. The telescope is our original type of micropore optics and possesses lightness (~5 g), a short focal length (~250 mm), and a wide field of view (~5 deg x 5 deg). The MEMS X-ray telescope is made of 4-inch Si (111) wafers. The Si wafer is firstly processed by deep reactive ion etching such that they have numerous curvilinear micropores (20-micrometer width) whose sidewalls are utilized as X-ray reflective mirrors. High-temperature hydrogen annealing and chemical mechanical polishing processes are applied to make those sidewalls smooth and flat enough to reflect X-rays. After that, the wafer is plastic-deformed into a spherical shape and Pt-coated by a plasma atomic layer deposition process to focus X-rays with high reflectivity. Finally, we assemble two optics bent with different curvatures (1000- and 333-mm radius) and complete the Wolter type-I telescope. We optimized each process to enable the optics to achieve an angular resolution of ~5.4 arcmins in half power width in a part of the mirror (~10 arcmins in half power diameter in the entire telescope, required for GEO-X) from the reflective surface figures and the whole wafer shapes. We are conducting an X-ray irradiation test to assemble the full-processed optics into an engineering model (EM) telescope for GEO-X and evaluate its performance. We also fabricated a structural thermal model (STM) telescope and verified its environmental tolerances by conducting a vibration test, a proton/heavy-ion radiation test, and a thermal-cycle test. We report on our latest development status as the X-ray imaging performance of the GEO-X EM telescope and the results of the environmental tests of the STM telescope.