日本地球惑星科学連合2024年大会

講演情報

[J] 口頭発表

セッション記号 P (宇宙惑星科学) » P-CG 宇宙惑星科学複合領域・一般

[P-CG22] 宇宙における物質の形成と進化

2024年5月27日(月) 10:45 〜 12:00 102 (幕張メッセ国際会議場)

コンビーナ:野村 英子(国立天文台 科学研究部)、大坪 貴文(産業医科大学)、瀧川 晶(東京大学 大学院理学系研究科 地球惑星科学専攻)、荒川 創太(海洋研究開発機構)、座長:落合 葉子(東京工業大学)、吉田 有宏(総合研究大学院大学物理科学研究科天文科学専攻)


11:15 〜 11:30

[PCG22-09] 星形成コア内のCOMsの炭素同位体分別に対する宇宙線の影響

*一村 亮太1野村 英子1古家 健次2 (1.国立天文台 科学研究部 / 総合研究大学院大学 天文科学専攻、2.国立天文台)

キーワード:宇宙化学、星形成

Recent high-resolution and sensitivity ALMA observations have unveiled the carbon isotope ratios (12C/13C) of Complex Organic Molecules (COMs) in a low-mass protostellar source. To understand the 12C/13C ratios of COMs, we investigated the carbon isotopic fractionation of COMs from prestellar cores to protostellar cores with a gas-grain chemical network model. COMs are mainly formed on the grain surface and in the hot gas (> 100 K) in the protostellar phase. The 12C/13C ratios of COMs depend on the molecules from which the COMs are formed and the reactions through which the COMs are formed. By incorporating reactions between gaseous atomic C and H2O ice or CO ice on the grain surface to form H2CO ice or C2O ice, as suggested by recent laboratory studies, we find that these direct C-atom addition reactions mitigate carbon isotope fractionation. Also, the model with the direct C-atom addition reactions better reproduces the observations than the model without the direct C-atom addition reactions. However, CH3OCH3 in our results shows depletion in 13C compared to observations. We also investigate the effect of various cosmic ray (CR) ionization rates on the 12C/13C ratio of COMs. High CR ionization rates promoted 13C-depleted COMs via radical-radical reactions on warm grain surfaces during the collapse phase. For CH3OCH3, CR ionization contributes to its increase via ion-molecule reactions and subsequent dissociative recombination in the warm gas phase after water ice sublimation. Consequently, the 12C/13C ratio of CH3OCH3 decreases rapidly with time. When the CR ionization rates become 1.3×10−14 s−1 only after protostar formation, this ratio becomes enriched in 13C. However, the 12C/13C ratio of CH3OCH3 even at the end of the collapse phase remains higher than the observations. We need more investigation to reproduce the observed carbon isotope fractionation of CH3OCH3.