日本地球惑星科学連合2024年大会

講演情報

[J] ポスター発表

セッション記号 P (宇宙惑星科学) » P-EM 太陽地球系科学・宇宙電磁気学・宇宙環境

[P-EM17] 宇宙プラズマ科学

2024年5月30日(木) 17:15 〜 18:45 ポスター会場 (幕張メッセ国際展示場 6ホール)

コンビーナ:天野 孝伸(東京大学 地球惑星科学専攻)、三宅 洋平(神戸大学大学院システム情報学研究科)、諌山 翔伍(九州大学総合理工学研究院)、梅田 隆行(北海道大学 情報基盤センター)

17:15 〜 18:45

[PEM17-P06] A new fourth-order leap-frog integrator for relativistic equations of motion for charged particles

*梅田 隆行1,2、溝口 英一郎1尾崎 理玖1 (1.名古屋大学 宇宙地球環境研究所、2.北海道大学 情報基盤センター)

キーワード:運動方程式、高次精度、数値スキーム

Numerical methods for solving the relativistic motion of charged particles with a higher accurately is an issue for computational physics in various fields. The classic fourth-order Runge-Kutta method (RK4) has been used over many years for tracking charged particle motions, although RK4 does not satisfy any conservation law. However, the Boris method (Boris 1970) has been used over a half century in particle-in-cell plasma simulations because of its property of the energy conservation during the gyro motion.
Recently, a new method for solving relativistic charged particle motions has been developed, which conserves both boosted Lorentz factor and kinetic energy during the gyro motion (Umeda 2023). The new integrator has the second-order accuracy in time and is less accurate than RK4. Then, new integrator is extended to the fourth-order accuracy in time by combining RK4 (Umeda & Ozaki 2023). However, it is not easy to implement the new fourth-order integrator into PIC codes, because the new method adopted co-located time stepping for position and velocity vectors.
In the present study, a fourth-order leap-frog integrator is developed, in which staggered time stepping is adopted for position and velocity vectors. It is shown by theoretical analysis and numerical experiment that position vectors have fourth-order accuracy in time by a three-stage integrator with Umeda (2023).