日本地球惑星科学連合2024年大会

講演情報

[J] ポスター発表

セッション記号 P (宇宙惑星科学) » P-EM 太陽地球系科学・宇宙電磁気学・宇宙環境

[P-EM17] 宇宙プラズマ科学

2024年5月30日(木) 17:15 〜 18:45 ポスター会場 (幕張メッセ国際展示場 6ホール)

コンビーナ:天野 孝伸(東京大学 地球惑星科学専攻)、三宅 洋平(神戸大学大学院システム情報学研究科)、諌山 翔伍(九州大学総合理工学研究院)、梅田 隆行(北海道大学 情報基盤センター)

17:15 〜 18:45

[PEM17-P14] 電子-陽電子-イオン3成分系における相対論的衝撃波からの電磁波放射

*荒井 翔吏1松本 洋介2 (1.千葉大学大学院融合理工学府、2.千葉大学国際高等研究基幹)

キーワード:相対論的衝撃波、高速電波バースト、PICシミュレーション

In 2007, a very bright radio wave emitted for a few milliseconds was found and named "fast radio burst (FRB)." FRBs have very high brightness temperatures and strong linear polarization. To explain these observational features, the magnetar flare model has been proposed, in which energy releases from the magnetars make relativistic shock and emit FRBs. It has been studied that electromagnetic waves were emitted from relativistic shocks in two-component plasma, such as pair plasma and ion-electron plasma, using particle-in-cell (PIC) simulations (e.g., Iwamoto et al., 2017; 2019). However, three-component plasma (electron, positron, and ion) has not been extensively studied (Hoshino and Arons, 1991; Amato and Arons, 2006). In this study, we examined properties of the precursor waves from relativistic shocks by using the 1-D PIC simulation code, pCANS.
We have investigated structures and energies of emitted precursor waves by changing the ratio of positrons to electrons and the ratio of the Poynting flux to the plasma kinetic energy (sigma parameter). As a result, we found that the structures of precursor waves can be categorized into three types depending on the ratio of positrons to electrons and the sigma parameter. Furthermore, we found that emissions of the precursor waves become inefficient when the sigma parameters are relatively high and the ratio of positrons to electrons is close to 0.6. We also found wave packets in specific parameter space, which can correspond to the transient property of FRBs. In this presentation, we report whether the precursor wave emissions in three-component plasma are consistent with the observational properties of FRBs based on precursor wave energies and the width of wave packets.