日本地球惑星科学連合2024年大会

講演情報

[E] 口頭発表

セッション記号 S (固体地球科学) » S-CG 固体地球科学複合領域・一般

[S-CG40] Science of slow-to-fast earthquakes

2024年5月28日(火) 09:00 〜 10:15 コンベンションホール (CH-B) (幕張メッセ国際会議場)

コンビーナ:加藤 愛太郎(東京大学地震研究所)、山口 飛鳥(東京大学大気海洋研究所)、濱田 洋平(国立研究開発法人海洋研究開発機構)、野田 朱美(気象庁気象研究所)、座長:加藤 愛太郎(東京大学地震研究所)、新井 隆太(国立研究開発法人海洋研究開発機構)

09:00 〜 09:15

[SCG40-01] Towards End-to-End Earthquake Monitoring Using a Multitask Deep Learning Model

★Invited Papers

*Weiqiang Zhu1 (1.University of California Berkeley)

Advancements in seismic data processing provide crucial insights into earthquake characteristics. Conventional methods used for earthquake monitoring tasks, such as earthquake detection and phase picking, are being enhanced by the rapid advancements of deep learning. However, most of the current research focuses on developing separate models for each specific task, leaving the potential of an end-to-end framework relatively unexplored. To address this gap, we extend the PhaseNet model to introduce a multitask framework. This enhanced model, PhaseNet+, can simultaneously perform tasks of phase arrival time picking, first motion polarity determination, and earthquake source parameter prediction. The outputs of these perception-based models can then be processed by specialized physics-based algorithms to accurately determine earthquake locations and focal mechanisms. Our approach aims to enhance seismic monitoring by adopting a more unified and efficient framework.