日本地球惑星科学連合2024年大会

講演情報

[J] ポスター発表

セッション記号 S (固体地球科学) » S-CG 固体地球科学複合領域・一般

[S-CG46] 岩石―流体相互作用の新展開:表層から沈み込み帯深部まで

2024年5月28日(火) 17:15 〜 18:45 ポスター会場 (幕張メッセ国際展示場 6ホール)

コンビーナ:岡本 敦(東北大学大学院環境科学研究科)、武藤 潤(東北大学大学院理学研究科地学専攻)、片山 郁夫(広島大学大学院先進理工系科学研究科地球惑星システム学プログラム)、中島 淳一(東京工業大学理学院地球惑星科学系)

17:15 〜 18:45

[SCG46-P13] 機械学習によるマグマ-熱水系における鉱化過程の識別

*朱 登輝1、高 燊2王 佳婕1土屋 範芳1 (1.東北大学大学院環境科学研究科、2.中国地質大学北京)

キーワード:石英、マグマ-熱水系、機械学習、識別

Quartz is a widespread gangue mineral in magmatic-hydrothermal systems. Trace elements in quartz record physical and chemical evolutions of quartz growth, providing essential clues about the formation processes of ore deposits in magmatic-hydrothermal systems. Previous studies utilize quartz chemistry such as Al verse Ti biplot and Ti-Al-Ge ternary plot to identify deposit types in magmatic-hydrothermal systems. However, two or three-dimensional data cannot capture all the features of trace elements, leading to a lower accuracy on the identification of deposit types. Considering the promising advantages of machine learning technique for processing large-sized and high-dimensional data, this research aims to propose a new machine learning-based method to analyze trace element data (Li Be B Na Mg Al K Ca Ti Cr Mn Fe Cu Zn Ga Ge As Rb Sr Y Mo Ag Sn Sb Cs Ba Pb Th U) in quartz of magmatic-hydrothermal system to provide a more efficient and precise interpretation of the origin and deposit types of quartz in magmatic-hydrothermal systems.

In this research, we analyzed the quartz trace element data (N = ~2000) of various deposit types and paragenetic stages in porphyry-epithermal system and granite-related uranium system from China by Random Forest (RF) and Uniform Manifold Approximation and Projection (UMAP). Unlike the conventional method, the result showed that utilizing Sb As Be Ge Al can better classify the quartz into porphyry-epithermal system and granite-related uranium system with the F1-score of 93.4%. For granite-related uranium system, utilizing Ti Al Li Sr Ba can further classify the quartz into hydrothermal origin and magmatic origin with the F1-score of 96.6%. For porphyry-epithermal system, utilizing Ti, Sb, Ge, Al, Li, As can classify the quartz into hydrothermal origin, epithermal origin and magmatic origin with the F1-score of 90.7%. Utilizing Sb, Ga, Be, Mg, Li, Sr, Ti can further classify epithermal origin of porphyry-epithermal system into various deposit types with the F1-score of 94.4%.