日本地球惑星科学連合2024年大会

講演情報

[J] ポスター発表

セッション記号 S (固体地球科学) » S-SS 地震学

[S-SS07] 地震波伝播:理論と応用

2024年5月28日(火) 17:15 〜 18:45 ポスター会場 (幕張メッセ国際展示場 6ホール)

コンビーナ:澤崎 郁(防災科学技術研究所)、竹尾 明子(東京大学地震研究所)、加藤 政史(株式会社地球科学総合研究所)、岡本 京祐(産業技術総合研究所)

17:15 〜 18:45

[SSS07-P19] Earthquake Source Impacts on the Generation and Propagation of Seismic Infrasound to the Upper Atmosphere

*能塚 義豊1、Pavel Inchin2金子 善宏1、Roberto Sabatini2Jonathan Snively2 (1.京都大学、2.エンブリー・リドル航空大学)

キーワード:TEC、インフラサウンド、SPECFEM、カップリング、動的破壊モデル

Earthquakes with moment magnitude (Mw) ranging from 6.5 to 7.0 have been observed to generate sufficiently strong acoustic waves (AWs) in the upper atmosphere. These AWs are detectable in Global Navigation Satellite System satellite signals-based total electron content (TEC) observations in the ionosphere at altitudes ∼250-300 km. However, the specific earthquake source parameters that influence the detectability and characteristics of AWs are not comprehensively understood. Here, we extend our approach of coupled earthquake-atmosphere dynamics modeling by combing dynamic rupture and seismic wave propagation simulations with two- and three-dimensional atmospheric numerical models, to investigate how the characteristics of earthquakes impact the generation and propagation of AWs. We developed a set of idealized dynamic rupture models varying faulting types and fault sizes, hypocentral depths and stress drops. We focus on earthquakes of Mw 6.0-6.5, which are considered the smallest detectable with TEC, and find that the resulting AWs undergo nonlinear evolution and form acoustic shock N-waves reaching thermosphere at ∼90-140 km. The results reveal that the magnitude of the earthquakes is not the sole or primary factor determining the amplitudes of AWs in the upper atmosphere. Instead, various earthquake source characteristics, including the direction of rupture propagation, the polarity of seismic wave imprints on the surface, earthquake mechanism, stress drop, and radiated energy, significantly influence the amplitudes and periods of AWs. Understanding these nuanced relationships between earthquake source parameters and AW characteristics is essential for refining our ability to detect and interpret AW signals in the ionosphere.