JpGU-AGU Joint Meeting 2017

講演情報

[EE]Eveningポスター発表

セッション記号 P (宇宙惑星科学) » P-EM 太陽地球系科学・宇宙電磁気学・宇宙環境

[P-EM12] [EE] Space Weather, Space Climate, VarSITI

2017年5月23日(火) 17:15 〜 18:30 ポスター会場 (国際展示場 7ホール)

[PEM12-P25] Construction of global chorus wave intensity distribution from precipitating electron flux measurement and its application

*栗田 怜1掘 将大1三好 由純1 (1.名古屋大学宇宙地球環境研究所)

キーワード:radiation belt, whistler mode chorus, precipitation

Whistler-mode chorus emissions are frequently observed in the inner magnetosphere during geomagnetically disturbed periods on the dawn and noon side magnetosphere. The waves have been considered as an important driver of the dynamics of inner magnetosphere. Resonant interactions of energetic electrons with chorus emissions result in flux enhancement of relativistic electrons in the outer radiation belt. On the other hand, the waves responsible for pitch angle scattering of electrons in the wide energy range from keV up to MeV range via pitch angle scattering. Previous studies show that chorus wave activities are correlated well with amount of energetic electron precipitations at low altitudes [Lam et al., 2010], and derive global intensity distributions of chorus waves during some events [Li et al., 2014; Chen et al., 2014]. It is possible that chorus wave intensity is constructed in global sense from the global map of precipitating electron fluxes. In this study we statistically investigate global distributions of > 30 keV precipitating electron fluxes observed by low-altitude POES satellites as a function of L, MLT, and Kp index. The distributions are compared with those of chorus wave intensity derived from the THEMIS satellites, and relationship between chorus wave intensity is parameterized as a function of L, MLT, and Kp index. Based on the parameterization, we successively construct global distributions of chorus wave intensity, and prediction of global chorus wave intensity variations is possible in cooperation with forecast of Kp index. In this presentation, we show the methodology of our analysis, obtained results, their performance to construct global distributions of chorus wave intensity, and its application to future research in the inner magnetosphere.