JpGU-AGU Joint Meeting 2017

講演情報

[EE] 口頭発表

セッション記号 P (宇宙惑星科学) » P-EM 太陽地球系科学・宇宙電磁気学・宇宙環境

[P-EM18] [EE] Origin of Earth-affecting Coronal Mass Ejections

2017年5月25日(木) 10:45 〜 12:15 A01 (東京ベイ幕張ホール)

コンビーナ:No? Lugaz(University of New Hampshire Main Campus)、草野 完也(名古屋大学宇宙地球環境研究所)、Neel P Savani(NASA GSFC / University of Maryland Baltimore County)、浅井 歩(京都大学大学院理学研究科附属天文台)、座長:浅井 歩(京都大学大学院理学研究科附属天文台)、座長:Lugaz Noe(University of New Hampshire)

12:00 〜 12:15

[PEM18-05] 惑星間コロナ質量放出のシース蓄積伝搬

高橋 卓也1、*柴田 一成1 (1.京都大学理学部付属花山天文台)

キーワード:coronal mass ejections, solar wind, space weather

Fast interplanetary coronal mass ejections (interplanetary CMEs, or ICMEs) are the drivers of strongest space weather storms such as solar energetic particle events and geomagnetic storms. The connection between space weather impacting solar wind disturbances associated with fast ICMEs at Earth and the characteristics of energetic CMEs observed near the Sun is a key question in the study of space weather storms as well as in the development of practical space weather prediction. Such shock-driving fast ICMEs usually expand at supersonic speed during the propagation, resulting in the continuous accumulation of shocked sheath plasma ahead. In this paper, we propose the “sheath-accumulating propagation" (SAP) model that describe the coevolution of the interplanetary sheath and decelerating ICME ejecta by taking into account the process of upstream solar wind plasma accumulation within the sheath region. On the basis of the SAP model, we discussed (1) ICME deceleration characteristics, (2) the fundamental condition for fast ICME at Earth, (3) thickness of interplanetary sheath, (4) arrival time prediction and (5) the super-intense geomagnetic storms associated with huge solar flares. We quantitatively show that not only speed but also mass of the CME are crucial in discussing the above five points. The similarities and differences between the SAP model and the drag-based model are also discussed.