2019年度 人工知能学会全国大会(第33回)

講演情報

一般セッション

一般セッション » [GS] J-11 ロボットと実世界

[1L3-J-11] ロボットと実世界: 認識と運動

2019年6月4日(火) 15:20 〜 17:00 L会場 (203+204 小会議室)

座長:ジメネス フェリックス(愛知県立大) 評者:長谷川 忍(北陸先端科学技術大学院大学)

15:20 〜 15:40

[1L3-J-11-01] HVGH: 高次元時系列データの深層圧縮と教師なし分節化

〇長野 匡隼1、中村 友昭1、長井 隆行2、持橋 大地3、小林 一郎4、高野 渉2 (1. 電気通信大学、2. 大阪大学、3. 統計数理研究所、4. お茶の水女子大学)

キーワード:分節化、ガウス過程、Variational Autoencoder

人は知覚した高次元の時系列情報を意味を持つ単語や単位動作に分節・分類することで認識している.ロボットが単語や動作を柔軟に学習するためにも,このような教師なしで分節・分類する能力は重要であると考えられる.本稿では教師なしで高次元の時系列データから特徴抽出すると同時に,単位系列に分節・分類が可能なHierarchical Dirichlet Processes-Variational Autoencoder-Gaussian Process-Hidden Semi-Markov Model (HVGH)を提案する.HVGHは,HDP-GP-HSMMにVariational Autoencoder(VAE)を導入したモデルであり,VAEとHDP-GP-HSMMのパラメータが相互に影響しあい学習される.VAEにより高次元データを分節化に適した低次元の潜在変数へと圧縮し,その潜在変数の遷移をガウス過程を用いて表現することで,高次元の複雑な時系列データの分節化を可能とする.実験では,様々なモーションキャプチャデータを用いて,提案手法が既存手法よりクラス数の推定精度及び分節・分類の精度が高いことが示す.