2020年度 人工知能学会全国大会(第34回)

講演情報

国際セッション

国際セッション » E-5 Human interface, education aid

[1G4-ES-5] Human interface, education aid: Learning method

2020年6月9日(火) 15:20 〜 17:00 G会場 (jsai2020online-7)

座長:松村真宏(大阪大学)

15:20 〜 15:40

[1G4-ES-5-01] Active Learning-Based Crowd Replication

〇Lulu Gao1, Shin’ichi Konomi2 (1. Graduate School of Information Science and Electrical Engineering, Kyushu University, 2. Faculty of Arts and Science, Kyushu University)

キーワード:crowd replication, active learning, data collection, informative dataset

Crowd replication, which combines crowd sensing, direct observation, and mathematical modeling to enable efficient and accurate evaluation of crowd, is a low-effort, easy-to-adopt and cost-effective mechanism for crowd data collection and analysis. In crowd replication, the quality of data collection is particularly important, therefore, a novel method of data collection is proposed. We apply active learning, which is a modern method in machine learning, aiming to reduce the sample size, complexity, and increase the accuracy of the data tasks as much as possible with less data, to allow us to obtain the more informative dataset. We demonstrate with experimental results that, compared with the traditional probability-based method, our contributions enable stably capturing a more representative dataset.

講演PDFパスワード認証
論文PDFの閲覧にはログインが必要です。参加登録者の方は「参加者用ログイン」画面からログインしてください。あるいは論文PDF閲覧用のパスワードを以下にご入力ください。

パスワード