2020年度 人工知能学会全国大会(第34回)

講演情報

国際セッション

国際セッション » E-2 Machine learning

[3F5-ES-2] Machine learning: Conversation and emotions

2020年6月11日(木) 15:40 〜 17:20 F会場 (jsai2020online-6)

座長:Rafik Hadfi(名古屋工業大学)

16:00 〜 16:20

[3F5-ES-2-02] An Evaluation Method for Attention-based Dialog System

Khin Thet Htar1, 〇Yanan Wang2, Jianming Wu2, Gen Hattori2, Aye Thida1 (1. University of Computer Studies, Mandalay, Myanmar, 2. KDDI Research Inc.)

キーワード:evaluation metric, dialog system, Contextualised embedding

Dialog systems are embedded in smartphones and Artificial Intelligence (AI) speakers and are widely used through text and speech. To achieve a human-like dialog system, one of the challenges is to have a standard automatic evaluation metric. Existing metrics like BLEU, METEOR, and ROUGE have been proposed to evaluate dialog system. However, those methods are biased and correlate very poorly with human judgements of response quality. On the other hand, RUBER is applied to not only train the relatedness between the dialog system generated reply and given query, but also measure the similarity between the ground truth and generated reply. It showed higher correlation with human judgements than BLEU and ROUGE. Based on RUBER, instead of static embedding, we explore using BERT contextualised word embedding to get a better evaluation metrics. The experiment results showed that our evaluation metrics using BERT are more correlated to human judgement than RUBER.

講演PDFパスワード認証
論文PDFの閲覧にはログインが必要です。参加登録者の方は「参加者用ログイン」画面からログインしてください。あるいは論文PDF閲覧用のパスワードを以下にご入力ください。

パスワード