2020年度 人工知能学会全国大会(第34回)

講演情報

インタラクティブセッション

[4Rin1] インタラクティブ2

2020年6月12日(金) 09:00 〜 10:40 R01会場 (jsai2020online-2-33)

[4Rin1-25] 階層型リカレントニューラルネットワークが作る認知地図と主観時間の圧縮

〇本間 航平1、丸山 典宏1、升森 敦士1、池上 高志1 (1.東京大学大学院)

キーワード:認知地図、場所細胞、人工生命

動物は自身の位置や環境の空間的特性を理解するために、複数の感覚入力に基づき認知地図と呼ばれる環境のモデルを生成する。この認知地図の生成には海馬の空間細胞や格子細胞が重要な役割を果たしていると考えられているが、詳細なメカニズムは明らかとなっていない。これまでの研究では、運動情報と視覚情報の統合予測による学習によって階層型リカレントニューラルネットワークの高レベルの階層に認知地図に相当する表現が形成されることが報告されている。また、視覚情報のみを用いたVAE-GANでの予測学習では、生成された認知地図上での行動時に時間的な加減速が見られ、主観時間の圧縮との関係が議論されている。これらの先行研究モデルを修正し、視覚情報と運動情報を取り入れたモデルから、認知地図と主観時間生成に関して議論を行う。

講演PDFパスワード認証
論文PDFの閲覧にはログインが必要です。参加登録者の方は「参加者用ログイン」画面からログインしてください。あるいは論文PDF閲覧用のパスワードを以下にご入力ください。

パスワード