2023年度 人工知能学会全国大会(第37回)

講演情報

国際セッション

国際セッション » IS-2 Machine learning

[2U4-IS-2c] Machine learning

2023年6月7日(水) 13:30 〜 15:10 U会場 (遠隔)

Chair: Tohgoroh Matsui (Chubu university)

14:30 〜 14:50

[2U4-IS-2c-04] Cognitive Workload Estimation from Raw EEG Signals using Deep Learning

〇Yoji Yamashita1, Yukako Ito2, Haluka Numata2, Nagisa Masuda2, Ikuko Yairi1,2 (1. Sophia University, 2. Graduate School of Science and Technology, Sophia University)

[[Online, Regular]]

キーワード:Deep Learning , EEG Signals, Cognitive Workload

The ability to continuously monitor cognitive workload associated with different tasks is crucial for understanding and evaluating user engagement. Electroencephalogram (EEG) is identified as one of the most promising indexes for measuring workload due to its high temporal resolution. However, EEG is usually buried under various noises and often requires preprocessing to obtain clean data for analysis. The purpose of this study is to propose a deep learning model suitable for estimating cognitive workload from raw EEG signals without using any preprocessing techniques. Specifically, the dataset consisted of EEG from two cognitive tasks, and the workload was calculated from Auditory Steady State Response (ASSR) which was used as input label. Comparing the performance of a 1D CNN and 1D CNN-LSTM model, both models achieved around 91.5% accuracy for the classification task, and the 1D CNN-LSTM model stood out achieving a R-squared of 0.991 for the regression task.

講演PDFパスワード認証
論文PDFの閲覧にはログインが必要です。参加登録者の方は「参加者用ログイン」画面からログインしてください。あるいは論文PDF閲覧用のパスワードを以下にご入力ください。

パスワード